
Enabling Generative AI Enterprise
Deployment with Retrieval
Augmented Generation (RAG)

Management Guide

2

Vespa.ai: Manager’s Guide to Retrieval Augmented Generation

Contents

Introduction 3

What is RAG 4
The RAG Workflow
Embedding
Vector Search
Hybrid Search
Addressing Latency and Reducing Costs
Security Considerations

Best Practices for Deploying RAG 13
Crawl: Experimentation
Walk: Enterprise Rollout
Run: Long Reasoning

About Vespa.ai 15

Introduction

Much has been written about the impact of generative AI on business transformation, so it’s unnecessary to
repeat it here. Instead, this document explains the key technologies and concepts required to implement
generative AI in a business, offering a guide for making informed, actionable decisions.

Large language models (LLM) have taken the world by storm. Part of the appeal is the ease with which products
like ChatGPT carry out tasks such as enriching search outcomes with text answers instead of listing websites,
creating new content, or conducting research. ChatGPT can do this straight out of the gate because it has
been trained on public information on the Internet.

But what if you want to use an LLM on some problem involving real-time or private company data that is not on
the public internet? You would need to supply that data to the LLM to solve the problem at hand. This is the
purpose of retrieval-augmented generation (RAG). RAG combines the power of LLMs with your organization’s
unique data sources, enabling the model to retrieve and integrate real-time or private information. This allows
you to generate highly relevant, context-rich responses appropriate for your business using your
data—whether for customer support, knowledge retrieval, company-specific insights or any other generative AI
initiative.

3

Vespa.ai: Manager’s Guide to Retrieval Augmented Generation

What is RAG?

Retrieval-augmented generation (RAG) allows generative AI models to securely access and use a company’s
private data to solve business problems. Understanding RAG is essential for any organization leveraging or
planning to leverage generative AI.

Unlike traditional enterprise decision-making, such as Business Intelligence (BI), which consolidates operational
data into a data warehouse for structured analysis and reporting, RAG enhances efficiency by dynamically
retrieving only the most relevant information from vast corporate data sources. This approach ensures that
generative AI responses are accurate, timely, and informed by the latest context, making it especially valuable
for applications that depend on rapidly changing data.

RAG operates in two steps:

1. Retrieval: Search vast data collections for information relevant to the user's question or task.
2. Generation: Use this targeted information to generate an accurate, context-aware response using an

LLM.

Killer applications for RAG span multiple sectors, including recommendation engines, personalized experiences,
enterprise search, customer support, healthcare image analysis, legal document analysis – any use case that
can be automated or improved with generative AI.

4

Vespa.ai: Manager’s Guide to Retrieval Augmented Generation

The RAG Workflow

A RAG workflow is the online end-to-end process from understanding the task, through information retrieval to
the LLM generating relevant and accurate responses. Here’s a breakdown of the steps in a typical RAG
workflow:

1. Query Processing: A user poses a question or task. This may be preprocessed to improve retrieval
accuracy by refining and focusing on keywords or intent.

2. Contextual Retrieval: The retrieval model searches a knowledge base for relevant content by
understanding the query's meaning. This approach finds conceptually related documents, even
without exact keyword matches. For example, in eCommerce, searching for a "stylish work backpack"
might yield high-quality leather bags or durable laptop backpacks that fit the user’s intent, even if
those words aren’t used.

3. Relevance Ranking: Retrieved documents are ranked by relevance, using machine learning algorithms,
based on similarity, context and user preferences and behavior.

4. Knowledge Aggregation: The most relevant results are selected and aggregated, preparing them to be
passed to the generative model.

5. Generative Response: Using the selected context, a LLM (such as GPT) creates a natural language
response.

5

Vespa.ai: Manager’s Guide to Retrieval Augmented Generation

Embedding

Embedding is a crucial process that transforms text, images, or other data types into numerical representations
(vectors) that capture the semantic meaning of the content. This allows the AI to understand context and
similarity, retrieve relevant information and generate accurate responses. Complex documents are embedded
before the RAG process begins rather than in real-time. This pre-processing approach helps optimize workflow
speed and efficiency, especially with large or complex document sets. This is typical for applications with large
amounts of static data, such as PDF documents in a bank.

The timescales for pre-embedding depend on the document's significance. For time-sensitive applications,
such as financial contracts or frequently updated product catalogs, new documents are embedded as they are
created or uploaded. This ensures that the latest information is immediately available for retrieval, enabling the
RAG workflow to respond with the most current data.

For less urgent applications, embedding is often done in batches—either daily, hourly, or at another regular
interval. This batch approach is efficient when dealing with a large volume of documents, as it reduces
computational strain by processing multiple documents at once. Batch embedding is suitable for platforms
with predictable content updates, such as nightly updates for document archives or knowledge bases.

An embedding and retrieval model gaining much attention is ColPali. ColPali is an open-source model that
simplifies and enhances information retrieval from complex, visually rich documents, including PDFs. It enhances
document retrieval by embedding entire rendered documents, including visual elements, into vector
representations optimized for LLMs. ColPali eliminates complex preprocessing, preserves visual context, and
streamlines the RAG pipeline by treating documents as visual entities rather than text.

However, embedding is not always necessary. In text-heavy applications, like product reviews in eCommerce or
Know Your Customer (KYC) in financial services, BM25 (Best Matching 25) can be a more effective, efficient and
vastly simpler alternative. BM25 ranks documents by relevance to a given query, utilizing term frequency (how
often a term appears within a document) and inverse document frequency (the term’s uniqueness across
documents) to assess relevance without the need for embedding.

6

Vespa.ai: Manager’s Guide to Retrieval Augmented Generation

Vector Search

While data retrieval can be from various sources, RAG often uses data stored as embeddings in a vector
database. A vector database is a specialized database that stores data in a dimensional form, giving structure
to unstructured data such as images, text, and audio. Vectors show the semantic similarity between pieces of
data. This is essential for tasks where you need to understand the meaning or similarity between items, such as
recommendation engines, semantic search, and matching tasks, where you want to retrieve items most similar
to a given input.

This is referred to as a dense vector search, where every position in the vector has a value, and the values are
derived from the entire context of words or sentences. For example, on an eCommerce website with dense
vector search, a search for "comfortable summer shoes for the beach," converts the query into a set of
numbers that capture the overall meaning of the phrase, rather than just the individual words. Instead of just
looking for items with the exact keywords "comfortable," "summer," or "shoes," the dense vector search
matches the query with product descriptions that have a similar meaning. This presents results such as:

● "Lightweight beach sandals"
● "Breathable sneakers for warm weather"
● "Comfy slip-ons ideal for outdoor summer use"

Even though these results may not contain the exact search words, the dense vector search understands the
context—something comfortable, summer-appropriate, and suited for the beach. This allows it to return
relevant options that might be missed if the engine only relied on exact keyword matching. In contrast, a
keyword-based or sparse vector search would show results only for products containing the exact words
"comfortable," "summer," and "shoes," which could be less helpful.

7

Vespa.ai: Manager’s Guide to Retrieval Augmented Generation

Vector Search (Continued)

Vector searches help find similar meanings but sometimes lack accuracy because they rely on semantic
similarity rather than exact term matching. This can lead to contextually close results that don’t precisely
match the user’s intent. This issue often arises due to nuanced meanings in language that the model might
misinterpret.

For example, consider a search on an eCommerce site for “formal black dress shoes.” A vector search might
retrieve results semantically similar to the idea of “formal shoes” or “black shoes” but miss the exact type of
shoe the customer wants. As a result, the search may surface:

● Black sneakers or loafers (similar color and general category but not formal dress shoes)
● Formal brown dress shoes (matching “formal” and “dress shoes” but missing the color specification)
● Men's formal dress shoes (even if the user is looking for women’s shoes, since the model might focus

on general terms rather than fine details)

This inaccuracy occurs because vector models prioritize capturing conceptual similarity rather than exact
matches on specific attributes like color, style, or intended use. Vector search excels in finding conceptually
related items, but it can lack the granularity needed for highly accurate results in cases where precise details
are essential.

Combining vector search with traditional keyword-based approaches, like BM25, can help mitigate this by
balancing semantic understanding with exact term matching, especially when exact product details or
attributes are critical.

8

Vespa.ai: Manager’s Guide to Retrieval Augmented Generation

Hybrid Search

Robust retrieval spans any data type – structured, unstructured, vectors and text – across multiple data
sources. It provides tools for searching for exact phrases, ranking results by relevance, summarizing content
dynamically, and letting users refine their search with filters. Limiting retrieval to vector search may overlook
important data and massively impact the outcome of the generative AI model.

Hybrid search combines traditional keyword-based retrieval with semantic vector search to deliver more
accurate and relevant results by leveraging both exact term matching and contextual understanding.
Businesses achieve more precise results by integrating traditional techniques like BM25, which ranks
documents based on keyword frequency, with advanced neural ranking models that learn from data patterns.
Studies, such as Perspectives on R in RAG, have demonstrated that these hybrid models outperform using
either method alone, particularly when dealing with new or unfamiliar topics.

In real-world search systems, ranking results often depend on real-time information like whether an item is in
stock, its popularity, or other business rules. These factors are hard to fit into a basic vector similarity
calculation, making it necessary to use additional ranking methods beyond vectors. Combining different data
sources—semantic vectors, exact text matches, and structured metadata—achieves the accuracy needed for
real-world applications. Feeding all these inputs into a decision-making model ensures you ultimately surface
the most relevant and accurate information.

9

Vespa.ai: Manager’s Guide to Retrieval Augmented Generation

https://blog.vespa.ai/rag-perspectives/

Addressing Latency and Reducing Cost

While generative AI is gaining traction, mainstream deployment in business operations is yet to happen. For
example, an MIT Technology Review survey of 300 senior executives revealed that while 76% of companies
experimented with generative AI in 2023, only 9% had adopted it widely. Most organizations plan to expand its
use indicating current limited deployment.

Transitioning generative AI “experiments” from concept to full enterprise deployment presents substantial
challenges. Poorly designed run-time deployment can result in runaway costs or poor search capabilities,
undermining generative AI's potential advantages. For instance, integrating dense vector search with traditional
search methods can enhance accuracy but often brings increased latency, higher costs, and scalability issues.
Effectively addressing these challenges calls for thoughtful architectural planning and a deep understanding
of the search system’s core infrastructure to ensure that it can deliver high performance at scale without
compromising efficiency.

Here are some techniques for optimizing RAG workflows, allowing businesses to run large-scale applications
without breaking the bank.

● Optimized Query Execution: Rapid handling of queries through efficient execution, parallel processing,
and smart caching strategies.

● Dynamic Auto-Scaling: This automatically adjusts resources in real time based on query complexity to
ensure efficient resource use and performance during peak traffic. Horizontal scaling adds nodes for
higher query volume, and vertical scaling enhances node capacity.

● GPU Acceleration: Utilizes GPU power for high-dimensional embedding similarity calculations,
significantly boosting performance.

● Distributed Processing: Improves resource efficiency by distributing queries to nodes where data
resides. Inferences—such as scoring, relevance, and other ML model calculations—are performed
locally, providing higher performance and avoiding network cost of moving data in centralized
processing.

10

Vespa.ai: Manager’s Guide to Retrieval Augmented Generation

Addressing Latency and Reducing Cost (Continued)

● Approximate Nearest Neighbor (ANN) Search: Speeds retrieval by approximating nearest neighbors
instead of exact matches, trading slight precision loss for significant gains in scalability and speed.
ANN is ideal for large datasets where exact search is computationally costly, such as in real-time
recommendations, interactive search, and time-sensitive applications like customer support or
conversational AI.

● Real-Time Indexing: Processes and incorporates new or updated data instantly, allowing users to
access the latest information without delay.

● Rapid Indexing: Employs techniques like quantization, which reduces each vector's value size (even
down to a single bit per value) to accelerate indexing without reducing data points.

● Embedding Compression: Employs techniques like Matryoshka Representation Learning (MRL) and
Binary Quantization Learning (BQL) to minimize storage requirements. MRL creates a flexible embedding
hierarchy, while BQL compresses floating-point dimensions to 1-bit, greatly reducing storage needs
with minimal accuracy loss.

● Hierarchical Navigable Small World (HNSW) Indexing: Offers tunable parameters (such as M for neighbor
count and ef for exploration), enabling a balance between memory usage and accuracy. Some
implementations support incremental graph updates, avoiding costly full re-indexing.

● Late Interaction Models: Precomputes document embeddings (for example, ColBERT) to reduce
query-time computation, resulting in faster, more efficient searches.

● Streaming Search: Stores vectors on disk rather than in memory, significantly reducing storage costs
while maintaining low-latency search, ideal for AI assistants handling large personal data volumes.

11

Vespa.ai: Manager’s Guide to Retrieval Augmented Generation

Security Considerations

As generative AI becomes more prevalent in the business, robust security is essential to protect sensitive data
and maintain user privacy. RAG workflows often handle vast amounts of private information and span multiple
systems, with significant security and governance implications.

The general approach taken by RAG vendors falls into two camps. RAG solutions from enterprise vendors such
as IBM Watson Discovery incorporate data governance features, whereas solutions from platform vendors like
Vespa.ai integrate with data governance frameworks to ensure compliance, data security, and data access and
usage control.

Governance is greatly simplified with RAG architectures that minimize data movement. Where data remains in
place during retrieval, ensuring governance policies remain intact.

12

Vespa.ai: Manager’s Guide to Retrieval Augmented Generation

Best Practice for Deploying RAG

For any organization, embracing generative AI can be daunting. The potential for business impact and
transformation is vast. However, as with any new and complex technology, there is substantial potential for
error and failure. To mitigate risk, Vespa advocates adopting an incremental crawl, walk, run approach where
ambitions are aligned with experience and confidence.

Crawl: Experimentation
BM25 is an effective starting point for a RAG model. It uses keyword-based ranking to match query terms
directly with document content, delivering strong relevance in text-heavy data without the need for
embeddings. Unlike vector embeddings, BM25 requires no complex processing, as it operates on simple inverted
indexes making setup straightforward and computationally light. This approach provides a strong baseline for
RAG workflows, enabling generative models to create coherent responses based on contextually relevant text
snippets retrieved via BM25.

Once you have a BM25-based RAG workflow in place, you can progressively move towards more advanced
techniques by integrating vector embeddings when needed. Combining BM25 with vector embeddings can
enhance retrieval quality further, as BM25 captures keyword relevance and embeddings capture semantic
similarity. This hybrid approach outperforms either method on its own, but starting with BM25 lets you build a
reliable foundation and scale up as requirements grow.

13

Vespa.ai: Manager’s Guide to Retrieval Augmented Generation

Walk: Enterprise Rollout

While proving the value of generative AI and gaining confidence with the required technology components is a
vital first step, scaling AI across an entire enterprise brings unique challenges. These include seamless
integration with existing data sources, stringent data privacy and security requirements, delivering high
performance, and managing a complex, large-scale runtime environment. Scalability is a key concern, as AI
models need to process massive and growing volumes of data while supporting diverse use cases—all without
compromising on performance or reliability. Typically, these require more comprehensive platforms than those
used for initial experiments.

Retrieval methods such as ColBert, which apply tensor computations in more advanced ways to achieve
superior results will continue to proliferate as the work we and others are doing to make these economical at
scale becomes more well known. Visual retrieval such as ColPali will continue to increase in popularity and
gradually take over document search.

Run: Long Reasoning

Long reasoning, pioneered by OpenAI, is the current state of the art of generative AI. It describes a model’s
ability to enter into a multi-step reasoning dialog with a user to get to the heart of the matter – ultimately
generating accurate and contextually relevant responses to intricate queries.

Each reasoning step may require information, which may translate into thousand of retrieval queries per
problem, significantly impacting the RAG infrastructure. As a result, low latency becomes essential to maintain
responsiveness, ensuring that end-users experience minimal delay even as the model engages in extensive
reasoning. The infrastructure must cope with high request rates to handle this query surge efficiently and
maintain system performance under heavy use. For internal RAG applications, such as those used within
enterprises for knowledge management, research, or customer support, low-latency, high-throughput retrieval
systems are paramount, as they enable long reasoning processes to operate effectively and deliver valuable
insights quickly.

14

Vespa.ai: Manager’s Guide to Retrieval Augmented Generation

About Vespa.ai

Vespa.ai is a platform for building and running real-time AI-driven applications for search, recommendation,
personalization, and RAG. It enables enterprise-wide AI deployment by efficiently managing data, inference, and
logic, handling large data volumes and over 100K queries per second. Vespa supports precise hybrid search
across vectors, text, and structured metadata. Available as both a managed service and open source, it's
trusted by organizations like Spotify, Vinted, Wix, and Yahoo. The platform offers robust APIs, SDKs for
integration, comprehensive monitoring metrics, and customizable features for optimized performance.

Vespa.ai

15

Vespa.ai: Manager’s Guide to Retrieval Augmented Generation © Vespa.ai Norway AI. Nov 2024

http://vespa.ai

