Elasticsearch vs Vespa
Performance Comparison

Geir Storli, Jo Kristian Bergum, Radu Gheorghe
November 2024

) \Vespa

1. Executive Summary

This report presents a reproducible and comprehensive performance comparison
between Vespa (8.427.7) and Elasticsearch (8.15.2) for an e-commerce search
application using a dataset of 1 million products. The benchmark evaluates both write
operations (document ingestion and updates) and query performance across different
search strateqgies: lexical matching, vector similarity, and hybrid approaches. All query
types are configured to return equivalent results, ensuring a fair, apples-to-apples
comparison.

Vespa demonstrates significant query performance, scalability, and update efficiency

advantages.
Vespa Elasticsearch
350 2000
12.9x 4.2x

300 [}
S

()
g 250 S 1500 2
© ®

-
% 200 E’_
= 1000
g 150 a
wn 8.5x =
=)
& 100 =
0.7x 500 o
e
50 =

0.3x
hybrid vector lexical feed refeed update
Queries Writes

The illustration shows queries per second per CPU core for different query types and
reveals Vespa’s significant query efficiency advantages:

e Hybrid Queries: Vespa achieves 8.5x higher throughput per CPU core than
Elasticsearch.

e \Vector Searches: \Vespa demonstrates up to 12.9x higher throughput per CPU
core.

e Lexical Searches: Vespa yields 6.5x better throughput per CPU core.

Updates: Vespa is about 4x more efficient than Elasticsearch for in-place updates.
While Elasticsearch demonstrates high efficiency during the initial write (bootstrap
from O to 1M) phase, Vespa excels in steady-state operations, handling queries and
updates more efficiently.

The following illustration compares how both systems handle hybrid queries, showing
the relationship between latency, CPU usage, and query throughput as user
concurrency increases.

Vespa Elasticsearch

70
60
50
40
30
20

Average Latency (ms)

10

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

100%

80%

60%

40%

CPU Usage

20%

0%
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Queries per Second (QPS)

Vespa shows higher CPU efficiency, demonstrated by a lower CPU usage gradient
compared to Elasticsearch. This superior performance efficiency directly reduces
infrastructure costs, as demonstrated in section 10, where the efficiency improvements
yield 5x reduction in infrastructure costs on a typical deployment (see section 10).

The findings of this report align with feedback from organizations that have migrated
their e-commerce solutions from Elasticsearch to Vespa. In *Vinted Search Scaling

Chapter 8: Goodbye Elasticsearch, Hello Vespa Search Engine”, they summarize their

migration experience with the following:

The migration was a roaring success. We managed to cut the number of servers we use
in half (down to 60). The consistency of search results has improved since we’re now
using just one deployment (or cluster, in Vespa terms) to handle all traffic. Search
latency has improved by 2.5x and indexing latency by 3x. The time it takes for a change
to be visible in search has dropped from 300 seconds (Elasticsearch’s refresh interval)

https://vinted.engineering/2024/09/05/goodbye-elasticsearch-hello-vespa/
https://vinted.engineering/2024/09/05/goodbye-elasticsearch-hello-vespa/

to just 5 seconds. Our search traffic is stable, the query load is deterministic, and we’re
ready to scale even further.

2. Table of Contents

1. Executive Summary
2. Table of Contents
3. Preface
4, Benchmark Use Case & Dataset
4. Dataset
4.2 Workloads
4.2.1 Write workloads
Initial writing of product documents
Updating the price of each product by rewriting all documents again
Updating the price of each product by partial update.
4.2.2 Query workloads
5. Elasticsearch vs Vespa Architectural Differences
51 Write Path
511 Write APIs
5.2 Real-time
5.8 Data structures
Inverted indices
Columnar store
Raw document store
HNSW index for Approximate Nearest Neighbor Search (ANN)
Fundamental data structure differences
Mutable versus immutable data structures
Vespa’s mutable and immutable mix
Apache Lucene segments
Segment merges
5.1.4 Threading
5.2 Query Path
5.21 Threading
5.2.2 Lexical search (accelerated by Weak AND)
5.2.3 Vector search using Approximate Nearest Neighbor (ANN) search
5.2.4 Hybrid search
5.2.5 Pre-filtering and post-filtering
5.3 Other Aspects
6. System Configuration
6.1 Hardware Specifications and Software Versions
6.2 Schema

o1

10
10
12
12
12
12
12
12
14
14
14
15
16
16
17
17
17
18
18
20
21
22
25
25
25
27

27
28
30
32
32
34

6.3 Queries
6.3.1 Lexical search - accelerated by Weak AND
6.3.2 Vector search
6.3.3 Hybrid search
6.3.4 Result set comparison
6.4 Elasticsearch Refresh Interval
6.5 JVM and Thread Pool Settings
6.6 Test Procedure
7. Description of Sampled Metrics
7.1 Writes
7.2 Queries
7.3 Ratios
8. Results
8.1 Writes
8.2 Queries
8.2.1 Fixed number of clients
Queries with fixed concurrency and no feeding
Queries with fixed concurrency during refeeding
8.2.2 Scaling with increased load & concurrency
Hybrid search
Lexical search
Vector search
8.3 Results Summary
9. Summary
9.1 Key Performance Differences
9.2 Implications of Performance Differences
10. Cost Example
1. How to Reproduce
111 Prerequisites
1M.2 Run Performance Tests
1.3 Create Report
Appendix A: Other Test Results
A Fixed number of clients
A1 Queries with fixed concurrency and no feeding
AN.2 Queries with fixed concurrency during refeeding
A.2 Scaling with increased load & concurrency
A.21 Hybrid search
A.2.2 Lexical search

35
36
38
40
42
43
44
46
a7
a7
48
48
49
49
50
50
o'
o3
o3
o6
58
60
61
63
63
64
65
67
67
67
68
70
70
70
75
76
77
78

A.2.3 Vector search
A.3 Impact of less capable hardware
A.3.1 Overall
A.3.2 Feed Performance
A.3.3 Query Performance

79
80
80
82
82

S. Preface

We benchmark software to establish performance expectations. The usual reason is
cost: deploying a more efficient technology will cost less. However, this cost reduction
can have other implications, like unlocking otherwise prohibitive features or making

clusters easier to scale and manage.

This benchmark compares Elasticsearch and Vespa under identical use case scenarios
and workloads. Our analysis focuses on an e-commerce search application
encompassing lexical, vector, and hybrid queries. In the context of e-commerce search,
three performance factors (beyond relevance) are essential:

e Query Latency: How quickly does the search engine respond?
e Throughput: How many searches can the engine handle at once?
e Efficiency: How much computing power (CPU) does the engine use?

Efficiency is vital because, in both Elasticsearch and Vespa, you can increase
throughput and reduce latency by using more resources. Search is a parallelizable
workload that can be distributed across multiple CPU cores to achieve speedups or
reduced query latency (“faster”).

A Comparative Example

Let’s look at two hypothetical search engines running on identical hardware (16 CPU
Cores):

e Engine A - 100ms latency using 2 CPU cores.
e Engine B - 50ms latency using 8 CPU cores.

We could say that B is faster (it is!) and leave it with that without mentioning that B
uses 4x the resources compared to A. But what if we could make A serve at 50 ms using
4 CPU cores? Then, we could reduce CPU-related costs by 2x using A instead of B while
maintaining the 50 ms latency.

This example shows how easy it is to create misleading benchmark reports. By omitting
resource usage metrics, we might draw incorrect conclusions about which engine is
truly more efficient.

https://vinted.engineering/2024/09/05/goodbye-elasticsearch-hello-vespa/
https://vinted.engineering/2024/09/05/goodbye-elasticsearch-hello-vespa/

Throughout this benchmark, we compare the engines’ performance fairly, transparently
reporting resource usage and employing realistic workloads. Both engines perform
identical tasks (see 6.6), returning nearly the same results for equivalent queries (see
6.3.4). Whenever we report throughput, we also normalize with regard to the amount of
CPU resources consumed to achieve it (see section 7). Our approach to benchmarking
requires establishing a common baseline of features and capabilities across the two
engines compared. We detail the configuration of both engines, the experimental
setup, and the realistic use case workloads (see section 6).

Last but not least, benchmarks must be reproducible. This benchmark runs daily in the

Vespa performance system test framework, and you can find everything you need to
run it yourself in section 11.

Let’s discuss everything mentioned above, starting with the use case: which dataset
we used and what workloads we used. Then, in section 5, we’ll take a deep dive into the
architectures of both engines before looking at the test configuration (section 6) and
results (sections 7 and 8).

https://github.com/vespa-engine/system-test/

4. Benchmark Use Case & Dataset

4./ Dataset

In this benchmark, we create an e-commerce use case based on the Amazon Reviews
2023 dataset from McAuley-Lab. This dataset contains 571.54M user reviews and
4819M products across 34 cateqgories. We select IM products by random from the
dataset to form our e-commerce document collection and extract the following
metadata for each product:

Product Title

Product Description
Product Category
Product Average rating
Product Price

In addition, we generate a text embedding vector using a concatenation of the title and
description. We use a small text embedding model for this benchmark: Snowflake’s
Arctic-embed-xs. This model has 22M parameters and produces embedding vectors of

384 dimensions. We do not include embedding model inference in the benchmark.

10

https://huggingface.co/datasets/McAuley-Lab/Amazon-Reviews-2023
https://huggingface.co/datasets/McAuley-Lab/Amazon-Reviews-2023
https://huggingface.co/Snowflake/snowflake-arctic-embed-xs
https://huggingface.co/Snowflake/snowflake-arctic-embed-xs

Duplicate products are removed, and descriptions are cleaned up before selecting 1M
products randomly. See the e-commerce hybrid search data prep for details. We use a

small sample of 1M products because the performance test runs daily as part of the
standard CI/CD procedure. A larger sample size would delay the pipeline and developer
feedback cycle. Here we show an example product document in Vespa JSON format so
you can get a feel for the data:

Unset
{
"put": "id:product:product::Cell_Phones_and_Accessories73",

"fields": {

"id": 73,

"title": "Samsung Galaxy Note 9 Wallet Case, Jaorty Premium
Leather Folio Flip Case Cover Book Design with Kickstand Feature with
Card Slots/Cash Compartment for Samsung Galaxy Note 9 - Red",

"category": "Cell_Phones_and_Accessories",

"description”: "Premium LEATHER MULTI-FUNCTIONAL VIEW FROM ANY
ANGLE CONVENIENT TO USE UPDATED SERVICE",

"price": 1269,

"average_rating": 5.0,

"embedding": [...]

We use a random sample of 10000 product titles as user queries. Only the first 8 words
of the product title are used, to mimic users searching for specific products. You can
find more information on how these queries look like in section 6.3.

M

https://github.com/vespa-engine/system-test/tree/master/tests/performance/ecommerce_hybrid_search/dataprep
https://docs.vespa.ai/en/reference/document-json-format.html

4.2 \Workloads

The following write and query workloads are most relevant for e-commerce search
systems.

4.2.1 Write workloads

Initial writing of product documents

This represents the scenario where we have an empty index and populate it with data
from scratch, bootstrapping the index from 0 to 1M products.

Updating the price of each product by rewriting all documents again

This represents the scenario where we rewrite from the source of truth while we have
an existing index that is serving query traffic. In e-commerce search, there is usually a
constant stream of inventory updates, plus a periodic (e.g. daily) refresh from the
source of truth.

Updating the price of each product by partial update.

This represents the streaming scenario where only specific fields are updated. This
could, for example, be price or inventory status (in stock) but also include fields that
are used for ranking, e.q. based on click streams.

4.2.2 Query workloads

Users searching for relevant products by using different types of queries:

e Lexical (keyword) search over the title and description fields.

e \Vector search using text embeddings. Powered by approximate nearest neighbor
search over the dense vector representations of the products.

e Hybrid search - a combination of the above query types.

For all three query types, we also benchmark with a filter on category. Making it a total
of six query type workloads. Each query type orders (ranks) products using a scoring
function. Queries are benchmarked when the system is idle without writes and with
ongoing writes (concurrent reads and writes).

12

Before diving into the benchmark results, let’s examine the architectural differences
between Elasticsearch and Vespa: specifically, how they handle data ingestion and
execute queries.

13

0. Elasticsearch vs VVespa Architectural
Differences

We’'ll focus only on this benchmark’s areas: writing to and reading from (querying) an
index. Both engines strive to strike a balance between query and write performance.

We think that an architecture deep dive is essential to understand how both engines
handle the trade-offs between indexing and querying, ultimately influencing their
performance characteristics for various workloads. Which is why this section is about V4
of the whole report. That said, feel free to navigate to the benchmark details (section
B) and results (section 8) and return to this section to gain deeper insights into the
architectural differences.

5.1 Write Path

Elasticsearch and Vespa write to a transaction log for persistence and durability while
writing to internal buffers and data structures on disk. But there are significant
differences in:

e How client applications write data over HTTP(S)
e How they approach eventual consistency
e Underlying data structures

0.1/1 Write APls

Typically, clients write to Elasticsearch using the Bulk API. The payload is
newline-delimited JSON (NDJSON). Each operation has a metadata line and a data line
unless it’s a delete action. The top-level response indicates if there’s an error. If it is, the
detailed part of the response gives error details, just like with individual indexing

requests.

With Vespa, clients always write documents individually, there is no batch or Bulk API
equivalent. Throughput can be achieved via HTTP/2 multiplexing, allowing multiple

requests to be sent simultaneously over a single connection. The Vespa Feed Client

library uses HTTP/2 and it’s already powering integrations like the Logstash OQutput for

Vespa and the Kafka Connect Vespa Sink.

14

https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-index_.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-index_.html
https://docs.vespa.ai/en/performance/http2.html
https://docs.vespa.ai/en/vespa-feed-client.html
https://docs.vespa.ai/en/vespa-feed-client.html
https://github.com/vespa-engine/logstash-plugins/tree/main/logstash-output-vespa
https://github.com/vespa-engine/logstash-plugins/tree/main/logstash-output-vespa
https://github.com/vinted/kafka-connect-vespa/

5.1.2 Real-time

documents transaction
log

client

= ©
AC K Wl'\e_n? METQ&V Flush

index disk
_ J

searcl«\ engine

When Vespa returns an acknowledgment of a write operation to a client, the operation
has been written to the transaction log (TLS), and the result is visible in searches. In
contrast, Elasticsearch returns the acknowledgment when the document is written to
the TLS. Documents are eventually available for search after the next refresh operation.

The Elasticsearch refresh mechanism allows batching of document operations but at
the cost of up to a refresh interval in indexing latencuy. If the use case requires serving
data immediately in real-time (e.g., | uploaded a new product to a marketplace and want
to see it there), you then must use a short refresh interval.

Refreshes are asynchronous, but they aren’t free. Getting the latest version of a

document requires either an index refresh or a search combined with a transaction log
lookup. While we didn’t benchmark Get performance, this impacts updates, as
discussed later in this section.

15

https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-refresh.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules.html#index-refresh-interval-setting
https://sematext.com/blog/elasticsearch-refresh-interval-vs-indexing-performance/
https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-get.html

5.1.8 Data structures

documents

idi 1
title: Fine mobile Pl«\one
category: phones

id: 2
title: fine car
category: cars

car: 2 .
fine: 1,2 l:pcl:::es 1 - title: fine mobile phone; category: phones
wobile: 1 2 - title: fine car; category: cars
(al«\one: 1
inverted columnar raw S
index store store

At a macro level, Elasticsearch and Vespa employ similar fundamental data structures
for hybrid search functionality, though their technical implementations vary
substantially. Let’s explore the fundamental data structures with broad strokes.

Inverted indices

Inverted indices are the cornerstone of efficient text search in both Elasticsearch and
Vespa. They power lexical searches, supporting retrieval (and scoring) of documents
containing text tokens. An inverted index consists of two main components:

e Dictionary: A sorted list of unique tokens in the indexed documents.
e Postings: For each token in the dictionary, a list of documents containing that
token. Possibly, other metadata (e.g. positions).
During feeding/indexing
e Documents are broken down into tokens.

e FEach unique token is added to the dictionary.
e The document ID is added to the postings list for each unique token.

16

During search

e The search term(s) is looked up in the dictionary.
e The corresponding postings list provides quick access to all documents
containing that term.

This structure allows for text searches, as the system can quickly identify which
documents contain the queried tokens without scanning every document.

Columnar store

Both Elasticsearch and Vespa use a columnar store to support efficient retrieval and
manipulation of field values across multiple documents. For example, during sorting,
faceting or ranking. In Elasticsearch, this data structure is known as "doc values”. In
Vespa, it’s called “attributes”.

Raw document store

This component stores the original document data:

e |n Elasticsearch: Known as the _source field or stored fields.
e In Vespa: Called document summaries.

Purpose:

e Allows retrieval of the full original document or specific fields.

e Supports highlighting of search terms in results.

e Enables reindexing and redistribution without reading from an external data
source.

HNSW index for Approximate Nearest Neighbor Search (ANN)
Both Elasticsearch (via Apache Lucene), and Vespa implement the HNSW (Hierarchical

Navigable Small World) algorithm for efficient ANN searches. HNSW is a graph-based ANN

algorithm that creates a multi-layer structure to enable fast approximate nearest
neighbor search.

e Hierarchical structure: Multiple layers of graphs, with the top layer being the
sparsest and the bottom layer the densest.

e Navigable: Designed for efficient traversal to find nearest neighbors quickly.

e Small World: Exhibits the small-world property, where most nodes can be
reached from every other node by a small number of hops.

17

https://www.elastic.co/guide/en/elasticsearch/reference/current/doc-values.html
https://docs.vespa.ai/en//attributes.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-source-field.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-store.html
https://docs.vespa.ai/en/document-summaries.html
https://arxiv.org/abs/1603.09320
https://arxiv.org/abs/1603.09320

During feeding/indexing

The HNSW indexing process is an operation that involves inserting vectors into a
multi-layer graph structure. As each vector is added, it undergoes similarity
comparisons with existing vectors to determine its position within the graph. This
process, along with subsequent search operations, requires graph traversals that
involve random access to vectors already in the graph. Due to the need for rapid and
repeated access to vector data for similarity computations, the entire dataset should
reside in primary memory (RAM) to ensure efficient performance. Many developers are
surprised to learn that writing to the graph structure requires computational effort
similar to performing a search operation, as both processes involve traversing and
evaluating nearest neighbors.

During Search

A nearest neighbor search starts at the top layer and gradually traverses the graph and
layers. At each layer, it navigates to the nearest known points to the query vector. The
respective HNSW implementations allow both Elasticsearch and Vespa to perform
efficient vector similarity searches.

Fundamental data structure differences

The core differences between Elasticsearch and Vespa are about how these
fundamental data structures are created and accessed. Elasticsearch maintains all of
them in self-contained immutable Lucene segments. In contrast, Vespa maintains a mix
of both immutable and mutable data structures, depending on the schema field types
and indexing parameters.

Mutable versus immutable data structures

When building search structures like inverted indices or HNSW graphs, the choice
between mutable and immutable approaches presents distinct tradeoffs. Mutable
structures allow for dynamic updates, enabling the index or graph to evolve as new
documents or vectors arrive. This approach supports real-time indexing but requires
careful handling of concurrency to prevent race conditions, particularly in HNSW
graphs where neighbor connections need to be updated atomically.

In contrast, immutable structures require batch processing to ingest a set of changes.
While this approach offers advantages like known document counts and simpler parallel
processing, it introduces latency between writes and their visibility. When new content
is added, it won’t be searchable until the next batch processing cycle completes and a
new immutable structure is created. This write-to-visibility delay can be significant for

18

use cases requiring real-time search capabilities, such as news platforms, social media

feeds, and e-commerce sites.

Query performance also differs significantly between these approaches. Immutable
structures typically exist as multiple segments or partitions, requiring queries to search
across all of them and merge results. While this can enable efficient parallel processing,
the overhead of searching multiple segments and merging results can impact query

performance compared to a single, mutable structure.

The fundamental difference lies in the approach: building a search structure for N items
as a single batch versus incrementally constructing it as items arrive from O to N. This
choice influences not just the write path, but also query performance and system
architecture. We’ll expand on both approaches below.

4 |) 4)
m» elasticsearch l: Vespa

rf_ucana J
Eagment E |
r_ -
Lucene Segment -]
~ Vespa Proton @
-

Lucene Segment)]
\ /L y,

Elasticsearch is built on Apache Lucene, a powerful open-source search library that can
also be used independently for custom search implementations. In contrast, VVespa
uses its own search engine architecture that, while feature-rich, is designed as a
monolithic system and cannot be decomposed into separate library components.

19

Vespa’s mutable and immutable mix

D Ves pa Simplified Content Node Internals

Writes

l

Memory Index (Mutable)

HNSW Grapl«s (Hutaue)

wh
=
651%
~ <\/
J/F:MSL\ Attribute Store (Mutaue)
o
Doc-::eFS'tore Flushed Index (Immutable)
"
(
Merged Index (Immutabl
Existing Index (Immutable) eryed Tnaex (utable)
—

A simplified illustration of Vespa’s content node (Proton) internals.

The content node in Vespa processes writes in a multi-layered approach. When a write
operation occurs, the data is first recorded in the Transaction Log Store (TLS), which
ensures durability of all operations, and the Document Store, which maintains the
primary storage of documents. Tokenization and other document operations happenin
the Vespa stateless layer.

From there, the write propagates to several (possibly) mutable components. The
Memory Index, which uses B+ trees for efficient organization of both dictionaries and
postings, temporarily stores these updates before they’re flushed to disk.

The Attribute Store, which operates like mutable in-place tables, keeps structured data
readily available for quick access and updates. Alongside these, the HNSW Graphs
component, also mutable, maintains graph structures used for approximate nearest
neighbor search. The vector data (or tensors, in general) are stored in the attribute
store and not in the graph structure.

20

The system manages long-term inverted index storage through a process of flushing
and merging indexes. When the Memory Index needs to be cleared, it flushes its
contents to create what’s called a Flushed Index. This Flushed Index is immutable,
meaning it can’t be changed after creation. It then goes through a fusion process with
the Existing Index (previously flushed and merged indices) to create a new Merged
Index, which is also immutable. Note that the Memory Index and Flush Index are only
relevant for string fields with indexing enabled. The Attribute Store and HNSW graphs
are maintained separately and they are mutable.

While this illustration focuses on write operations, queries can interact with multiple
system components depending on their complexity. For example, a hybrid query might
access the memory index, the flushed fused index, and both the HNSW graph and
attribute store. The only component not involved in queries is the Transaction Log Store
(TLS). See more in Vespa documentation (Proton).

Apache Lucene segments

Lucene-based engines, such as Elasticsearch, utilize immutable segments to write data
structures to disk. An index comprises one or more such segments. Once written, a
Lucene segment remains unalterable. To achieve near real-time indexing (add, remove,
update), Elasticsearch uses the following procedure:

e A new segment is generated upon writing a batch of documents.

e FEach segment incorporates all the data structures necessary for querying:
inverted index, columnar store, raw document store, and HNSW graphs for
dense vector fields.

e During query execution, all the segments of an index (roughly equivalent to a
document type in Vespa) are searched and the results are merged.

Segments maintain immutability. Consequently, document deletion from a segment
results in a soft delete, where the document ID is appended to the segment’s deletion
list. Deleted documents persist in internal searches but are filtered using the deletion
list.

Similarly, updating a document by partial update is implemented by soft-deleting the
document that is updated and writing the updated version of the document to a new
segment. Hence, partial updates follow a read-update-write pattern. In Vespa, only

some partial updates require reading the latest version of the document, applying the

update, and writing back the result. In Elasticsearch, every partial update operation
follows this read-update-write pattern.

21

https://docs.vespa.ai/en/proton.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/dense-vector.html#index-vectors-knn-search
https://www.elastic.co/guide/en/elasticsearch/guide/current/_add_an_index.html
https://docs.vespa.ai/en/reference/schema-reference.html#document
https://docs.vespa.ai/en/partial-updates.html

This read-update-write pattern can be a performance bottleneck for partial updates for
Elasticsearch. Elasticsearch can’t tell if a get request returns the last version of the
document unless it looks up in the transaction log or forces a synchronous refresh
which blocks the get request.

Segment merges

Maintaining an optimal number of segments in Elasticsearch is important to prevent
search performance degradation and inefficient disk space usage. To reduce the
number of active segments, background segment merges occur periodically. As

described in this seminal blog post, this process involves combining N immutable
segments to create a new segment. A typical index structure includes a mix of segment

sizes, ranging from small to progressively larger, resembling the following pattern:

(G =
Tramatton oy

V

E_ucene Segment j] L refresh

Queries

m» elasticsearch
-—w

search

search

[Lucene Segment 3

[Lucene Segment a l

(Lucene Segment 4

(Lucene Segment a r

_ ’ J

This illustration shows the architecture of Elasticsearch, depicting the flow of data
through its core components. Document operations are written to a transaction log for
durability and indexed into immutable Lucene segments. The diagram demonstrates
how queries search across all segments, while a background process merges smaller
segments into larger ones for improved query performance.

22

https://blog.mikemccandless.com/2011/02/visualizing-lucenes-segment-merges.html

The benchmark covers typical workloads and configurations used in practice:

1) Continuous near real-time indexing using the default merge policu.

2) Index force merged to one segment. This fits the “nightly reindex” pattern.
E-commerce applications often update their product catalogs nightly. This
process typically involves creating a new index and force-merging it into a single
segment before serving it to users. The transition to the latest index is usually
accomplished by updating the alias used by queries. While force-merging is

resource-intensive, consuming significant time, CPU, and I/O capacity, it
generally proves beneficial for query performance in scenarios where the index
remains effectively read-only throughout the day.

You can tweak the number of segments for case 1 by adjusting the merge policy. These
knobs allow you to control the number of deletes, how much to favor large vs small
segments, and the upper segment size limit. We only benchmark using the default
merge policy because:

e The optimal merge policy depends on the specific use case. Factors such as the
document updates (including the generation of deleted documents), the volume
of updates and indexing latencuy.

e NMost don’t adjust the merge policy. The last Elasti rch mentation for
merge policy is about ten years old (version 1.4). The argument was that these
settings were too trappu. But if you’re curious, there are quite a few resources to

help you understand and tweak the Lucene merge policy, especially around Solr
(that can be translated to Elasticsearch). Benefits can be significant, as
demonstrated in this Elastic blog post.

Why do we spend so much time on segments? Because they significantly impact query
performance. To power vector and hybrid searches, Lucene maintains one HNSW graph
per segment for each dense_vector field to serve approximate nearest neighbor
searches. By contrast, Vespa maintains a mutable HNSW graph per tensor field (with

index enabled) per content node, which means it behaves similarly to an Elasticsearch
index with one segment (force-merged).

23

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-forcemerge.html
https://github.com/elastic/elasticsearch/blob/v8.15.0/server/src/main/java/org/elasticsearch/index/MergePolicyConfig.java
https://www.elastic.co/guide/en/elasticsearch/reference/1.4/index-modules-merge.html
https://www.elastic.co/guide/en/elasticsearch/reference/1.4/index-modules-merge.html
https://github.com/elastic/elasticsearch/issues/13185
https://github.com/elastic/elasticsearch/issues/13185
https://sematext.com/blog/solr-optimize-is-not-bad-for-you-lucene-solr-revolution/
https://www.elastic.co/search-labs/blog/elasticsearch-vector-large-scale-part1
https://www.elastic.co/guide/en/elasticsearch/reference/current/dense-vector.html#index-vectors-knn-search

Vespa Content Node Elasticsearch Shard

Vespa maintains one mutable HNSW graph per tensor field, while Elasticsearch
maintains one HNSW graph per segment per dense_vector field.

There are two aspects that impact query and write performance:

Querying multiple HNSW graphs, one per segment per dense_vector field
In Elasticsearch 8.10, the default search strateqy changed from a single thread

searching segments sequentially to concurrently, using multiple threads (see
section 5.2.1). This reduces wall time and speeds up the search (“faster”), at the
cost of CPU usage per query. A benefit of searching the segments concurrently
compared to in sequence is that search threads can exchange information, as
detailed in this blog post.

Merging of multiple HNSW graphs during segment merges

Merging inverted index data structures for lexical search, where dictionaries and
posting lists are sorted, has low computational complexity. Merging HNSW
graphs from two or more segments into a single graph is more complex. The
current merge implementations will use the largest segment’s HNSW graph as a
seed graph to avoid building the merged graph from scratch.

In a Vespa content node, you have memory indexes flushed to disk occasionally (similar
to Elasticsearch’s flush). A flush triggers a disk index fusion with the existing index for
that field on the disk. Meanwhile, Elasticsearch will have one instance of all data

structures in every Lucene segment. Especially with the default merge policy, Vespa

will generally touch fewer “partitions” of data structures during query execution than

Elasticsearch.

24

https://www.elastic.co/guide/en/elasticsearch/reference/current/release-notes-8.10.0.html
https://github.com/elastic/elasticsearch/pull/98204
https://www.elastic.co/search-labs/blog/elasticsearch-lucene-vector-database-gains
https://github.com/apache/lucene/pull/12050
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-flush.html#flush-api-desc

9.1.4 Threading

Both Vespa and Elasticsearch have separate thread pools for write and read workloads.
In Elasticsearch, the write thread pool can use all the available CPU cores by default.

In Vespa, the main task of writing (e.g., creating inverted indexes and dealing with their

compactions, much like Lucene merges) is done by Feed Writer threads, which default
to half the available CPU cores. We didn’t increase it from there because other thread

pools are also handling writes. For example, writing document summaries to disk (i.e.,

raw data, like _source in Elasticsearch). Generally, altering Vespa’s mutable data
structures per field requires synchronization, meaning that one thread per field can
mutate the data structure.

Similarly, both engines have search-related thread pools. But there’s more to the
queries than just threads, so let’s zoom in.

5.2 Query Path

As with indexing, search thread pools differ between the two search engines. Let us
examine those before discussing how Elasticsearch and Vespa handle the query types
this benchmark includes.

5.2 Threading

In Elasticsearch, with concurrent segment searching enabled (the default since 8.10.0
and which can only be disabled by an undocumented setting), it’s the search thread

pool’s job to coordinate queries across different shards. Then the search worker
thread pool runs searches concurrently across active segments. The size of each
search thread pool defaults to about 1.5 times the number of available CPU cores.

Vespa has a slightly different approach. Query coordination happens in a JVM process
(stateless container node), which is separate from the native C++ process that deals
with matching and most phases of ranking (content node). You can think of these as
Elasticsearch coordinator and data nodes, respectively. You’ll find more information on

how concepts translate between Vespa and Elasticsearch in this glossary blog post,
but here, we’ll concentrate on the relationship between container and content nodes:

25

https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-threadpool.html
https://docs.vespa.ai/en/proton.html#disk-index-fusion
https://docs.vespa.ai/en/performance/sizing-feeding.html#content-node-thread-pools
https://docs.vespa.ai/en/reference/services-content.html#feeding
https://docs.vespa.ai/en/reference/services-content.html#feeding
https://docs.vespa.ai/en/performance/sizing-feeding.html#content-node-thread-pools
https://docs.vespa.ai/en/performance/sizing-feeding.html#content-node-thread-pools
https://docs.vespa.ai/en/document-summaries.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-source-field.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/release-notes-8.10.0.html
https://github.com/elastic/elasticsearch/pull/98455
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-threadpool.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-threadpool.html
https://docs.vespa.ai/en/jdisc/
https://docs.vespa.ai/en/phased-ranking.html
https://docs.vespa.ai/en/content/content-nodes.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#node-roles
https://blog.vespa.ai/dictionary-vespa-to-elasticsearch-opensearch-solr/

Query: select / search, rank and group / aggregate

}

Stateless Java container cluster

Query Document Other

Processors Processors Components

Content cluster

Content Management Distributed Query Execution

For queries, Vespa has these thread pools:

e The container process has a worker thread pool, similar to Elasticsearch’s

search thread pool. Its size defaults to about the number of CPU cores and is
rarely a bottleneck. More commonly, heap sizing and GC are something to tune.
It’s a similar situation with Elasticsearch coordinator nodes.

e The content node has configurable search threads, similar to the
search _worker thread pool in Elasticsearch. By default, there are 64 workers,
but this number might need tweaking based on hardware and workload.

e In the content node, you can also configure the number of threads to be used

per search, which rank profiles can override. Rank profiles define how to compute

relevance scores. This allows for intra-query concurrency, where a single query
can use multiple threads to retrieve and rank documents. While Elasticsearch
supports concurrently searching multiple segments, an intra-segment search
cannot currently use more than one thread (This is now supported in Apache
Lucene 10).

e There’s a separate summary thread pool in the content node. It deals with

fetching raw summary data (after identifying the global top-k ranked
documents). We don’t use it in this benchmark because we only return
document IDs, not the raw documents (in both Vespa and Elasticsearch), to
reduce the number of variables.

Now that we’ve covered threading, let’s examine the different query types run by this
benchmark and how each engine handles them.

26

https://docs.vespa.ai/en/performance/container-tuning.html#container-worker-threads
https://docs.vespa.ai/en/reference/services-content.html#requestthreads
https://docs.vespa.ai/en/reference/services-content.html#requestthreads-persearch
https://docs.vespa.ai/en/reference/services-content.html#requestthreads-persearch
https://docs.vespa.ai/en/reference/schema-reference.html#num-threads-per-search
https://github.com/apache/lucene/pull/13542
https://www.elastic.co/search-labs/blog/apache-lucene-10-release-highlights
https://www.elastic.co/search-labs/blog/apache-lucene-10-release-highlights
https://docs.vespa.ai/en/reference/services-content.html#requestthreads-summary

5.2.2 Lexical search (accelerated by Weak AND)

In an e-commerce setup, users search for multiple words (e.g., “Nokia 3310 blue™). The
definition of a “word” is fuzzy, depending on how linguistics is set up (in Elasticsearch,
analysis), so we’ll refer to the final search terms as “tokens”.

Consider a query for N tokens. If N is large, the query becomes expensive, as many
documents will match at least one of these tokens. If we use the OR operator, many
documents must be scored to determine the most relevant.

Vespa and Elasticsearch implement variants of a pruning algorithm called “Weak AND”
(references here and here) to make OR searches more efficient. This algorithm produces
the same top N list as a full OR evaluation using an additive scoring function over the
terms, without computing most of the scores.

5.2.3 Vector search using Approximate Nearest Neighbor (ANN)
search

“Semantic search” has become synonymous with ANN. Here’s the rough idea:

o Run text through a text embedding model that generates a dense vector
representation (e.g., using the product title and description as the input). If the
model fits the use case, vectors should capture semantics well.

e Index those vectors along with the original text in Vespa or Elasticsearch.

e Run the query string through the same embedding model to produce a dense
vector representation of the query text.

e Documents with vectors closer to the query vector should be more relevant.

Computing the distance between the query vector and all document vectors (exact K
nearest neighbor search) is expensive. Exact KNN only makes sense if other parts of the
query restrict matching documents to less than about 5% of the full corpus. To speed
up nearest neighbor queries, Vespa and Elasticsearch both use HNSW graphs.

5.2.4 Hybrid search

Both vector and lexical search have their pros and cons. For example, vector search
tends to have better recall, while lexical search tends to have better precision. This is
why many deployments use both and combine their scores for better overall relevance.

27

https://docs.vespa.ai/en/linguistics.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules-analysis.html
https://docs.vespa.ai/en/using-wand-with-vespa.html
https://www.elastic.co/blog/faster-retrieval-of-top-hits-in-elasticsearch-with-block-max-wand

Vespa is flexible when it comes to combining scores. The most popular one is
Reciprocal Rank Fusion (RRF). Elasticsearch also implements RRF through retrievers, but
at the time of writing, it’s in technical preview. Since we’re not focusing on relevance,

but we want to benchmark identical functionality, we’re simply adding the lexical and
vector search scores in Vespa’s hybrid rank profile. This is the equivalent of a boolean
guery in Elasticsearch.

5.2.b Pre-filtering and post-filtering

Most e-commerce searches have filters (e.g., by product category). While using filters
in lexical search is very straightforward (another query clause that doesn’t count for
ranking), combining it with ANN search is more challenging. That’s because the HNSW
graph doesn’t store data about the product category (as in this use case). So, how can
we extract only the nearest neighbors matching the filter criteria?

There are two solutions to this: pre- and post-filtering. In short, pre-filtering is more
precise, while post-filtering is faster.

Pre-filtering implies that when a node is visited in the HNSW graph, the filter to tell
whether the node can be considered a hit has already been applied. This is done for
every node as the graph is traversed until the target number of hits is met. This makes
the query functionally complete but expensive because the filter has to accumulate all
matching documents, and there’s a double-check step for every visited node in the
HNSW graph.

Post-filtering runs the ANN search first, then checks the top N results against the filter.
Which is efficient, but there’s no quarantee that you’ll get the requested number of hits
or that you will get any at all. Depending on the use case, this might be acceptable,
especially if you over-fetch the number of results from the ANN search.

Both Vespa and Elasticsearch support pre- and post-filtering of vector search. There
are some implementation differences, though. Let’s go over the main ones.

Vespa allows post-filtering to kick in based on a configurable hit ratio. For example,
suppose the filter matches 80% of the whole dataset (or, even better, if we predict that
it does before even running it). In that case, we can be confident that we get enough
results, especially if we over-fetch. This behavior is disabled by default. We kept it

disabled for this benchmark, as there’s no equivalent in Elasticsearch.

28

https://docs.vespa.ai/en/phased-ranking.html#cross-hit-normalization-including-reciprocal-rank-fusion
https://www.elastic.co/guide/en/elasticsearch/reference/current/retriever.html#rrf-retriever
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-bool-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-bool-query.html
https://docs.vespa.ai/en/reference/schema-reference.html#post-filter-threshold
https://docs.vespa.ai/en/reference/schema-reference.html#target-hits-max-adjustment-factor

If only a few documents match the filter, it’s likely faster to simply iterate through them
(i.e., do an exact nearest neighbor search). Vespa checks this in two steps:

e As an estimation, before running the pre-filter.
e After running the pre-filter.

If there are fewer matching documents than a configurable threshold, Vespa runs an
exact KNN search. You can find an extended explanation of Vespa’s pre- and
post-filtering behavior in this blog post. Meanwhile, Elasticsearch falls back to the
exact KNN in two scenarios:

e \When it has already visited more HNSW nodes than the number of documents
matching the filter.
e \When the number of documents from the filter is smaller than K.

Note that K (as in “K nearest neighbors™) has a different meaning depending on the
context. There are three such contexts:

1) Top K vectors visited in the HNSW graph. This is the K mentioned in the last bullet
for Elasticsearch, defined by num candidates in the Knn guery. For Vespa, this is
targetHits + hnsw.exploreAdditionalHits. Because the HNSW graph is inherently
approximate, we can trade performance for precision by fetching more vectors.

2) Top K vectors returned by the ANN query. These come from computing the
distance between the query vector and the vectors visited in the previous step.
This is k in the Knn query in Elasticsearch and targetHits in Vespa.

3) Top K final documents to return to the client, considering other filters,
post-filters, etc. That is the first page of the results. This is the size parameter
in the Elasticsearch request body and the limit/hits in Vespa.

29

https://docs.vespa.ai/en/reference/schema-reference.html#approximate-threshold
https://blog.vespa.ai/constrained-approximate-nearest-neighbor-search/
https://lucene.apache.org/core/9_9_0/core/org/apache/lucene/search/KnnVectorQuery.html
https://lucene.apache.org/core/9_9_0/core/org/apache/lucene/search/KnnVectorQuery.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-knn-query.html#knn-query-top-level-parameters
https://docs.vespa.ai/en/reference/query-language-reference.html#targethits
https://docs.vespa.ai/en/reference/query-language-reference.html#hnsw-exploreadditionalhits
https://docs.vespa.ai/en/reference/query-language-reference.html#limit-offset
https://docs.vespa.ai/en/reference/query-api-reference.html#hits

seleet ...

limit 2
<
> 'y
ANN Q;Aer‘/ pre/post-Filtireo! Cllel‘\t

\ doc1
o(:ccz X limit 2 - Final results
doc3 targetHftS-‘-‘\‘ 0(03
o(oc‘l AOCQ
doe5
docé

num_candidates=6

When running the benchmark, we’ve calibrated all those “K” parameters to be the same
for both engines to level the playing field. For example, k in Elasticsearch is set to the
same value as targetHits in Vespa, and so on. You'll find the exact queries in section
6.3.

5.3 Other Aspects

Even though there’s quite a lot of information above, there’s much more to
Elasticsearch and Vespa architecture differences that we didn’t cover here. It’s not that
they don’t matter in practice, but considering them will increase the number of
variables we can control during a benchmark. They may well be the subject of other
benchmarks.

Both Vespa and Elasticsearch can scale horizontally by adding more nodes. The
distributed models vary greatly, offering pros and cons for each side. We eliminated this
variable here by running benchmarks on a single node.

In Elasticsearch, you can have multiple indices. which are discrete units of data and

configuration. Vespa has document types that provide a similar separation. Each
Elasticsearch index can be divided into multiple shards that can spread out on multiple

30

https://www.elastic.co/guide/en/elasticsearch/guide/current/_add_an_index.html
https://docs.vespa.ai/en/reference/services-content.html#document

nodes. Vespa can distribute data more granularly, where the storage layer on each
content node comprises many buckets, which are also spread between nodes. There
are lots of pros and cons to discuss here as well. They’re out of the scope of this
report, but there are starting points in the Vespa and Elasticsearch documentation,

respectively.

The data layout (e.q., dividing data into multiple indices or document types) is
essential, and the ideal configuration depends on the use case. We use one document
type, index, and shard per index to eliminate this variable. This wauy, as far as client
applications are concerned, we only use the smallest search unit.

Let’s zoom into those searches now: how they’re done and on which configuration.
Later on, we’ll explore the benchmark results.

3’

https://docs.vespa.ai/en/elasticity.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/_scale_horizontally.html

6. System Configuration

This benchmark is reproducible and runs multiple times daily in the Vespa system test
environment. Which means we’re using the same hardware as the other Vespa
performance tests. As you’ll see below, it’s over-provisioned for the dataset of 1M
documents. That’s because the primary constraint is the time to run all the
combinations (query types, number of clients).

6.1 Hardware Specifications and Software Versions

To keep the number of variables in check, we used one Elasticsearch index of one
shard, while Vespa had one content node.

Everything runs on a single machine. The machine used is AWS cBid.metal with:

e 128 vCPUs. Only 62 are available for the performance test, which both
Elasticsearch and Vespa correctly detect. The test uses 62 rather than 64 to
accommodate system processes in Kubernetes. Yes, the test only uses half the
machine, because the test framework normally runs two tests on the same
machine concurrently.

e 256GB of RAM, out of which 150GB is available for the performance test.

e 4x1900GB NVMe SSD.

As with everything, your mileage might vary. Which is why you can always re-run the
test on your own hardware (see section 11) and you can even see results from less
capable hardware in Appendix A.3.

We use this machine type for Vespa performance tests because it’s a “metal” machine,
which gives it better stability between consecutive test runs. The instance type is
clearly overprovisioned, given that we index only 1M products, but our performance
test framework does not support allocating test-specific instance types.

All this is OK for this type of use-case and research: e-commerce applications often
care only about CPU efficiency. By benchmarking, we can figure out how many CPUs we
need to support the required traffic with acceptable search latency. Then we can go
hunting for optimized instance types with the right balance between CPU cores and
memory.

32

https://github.com/vespa-engine/system-test
https://github.com/vespa-engine/system-test
https://aws.amazon.com/ec2/instance-types/c6i/

If the CPU is not your bottleneck, your setup is very likely sub-optimal cost-wise. You
need enough RAM to store the HNSW graph plus vector data for ANN search; otherwise,
queries will page from disk, slowing them down a lot.

As for versions, the test framework uses the latest Vespa version automatically. The
Elasticsearch version can easily be changed. The results presented in this report are

from Vespa 8.427.7 and Elasticsearch 8.15.2.

Below, we’ll review the benchmark setup, including queries and schema, thread pools,
and heap size. Then, we’ll give a high-level overview of the test procedures.

33

6.2 Schema

Documents in the test dataset have the following fields:

id - document identifiers that are stored.

title - the title of the product used for lexical search.

description - product description, also used for lexical search.

category - string field used for filtering by exact match (no tokenization).
price and average rating - numeric fields (integer and float respectively)
that can be used for scoring or faceting. We don’t query them in this benchmark.
We do change the price during the update test.

embedding - vectors of 384 float dimensions generated from product title and

description via Snowflake’s Arctic-embed-xs.

The mapping in Elasticsearch is equivalent to the Vespa schema:

id, category, price,and average rating are stored in row-based and
columnar storage. The row-based storage is the__source field in Elasticsearch
and document summary in Vespa, while the columnar storage is doc _values in
Elasticsearch and attribute in Vespa. You can find more Vespa-to-Elasticsearch
equivalents in this blog post. Except for category, none of these fields have an
inverted index (e.g., index=false in Elasticsearch) because we only filter by
cateqgory.

title and description are tokenized and indexed. When searched, they
produce a BM25 score in both search engines. They are also stored in
_source/summary.

embedding is a dense vector/tensor field of 384 floats. We generate an HNSW
index using the same parameters (from the original implementation, M=16,

ef construction=200). The distance metric is an optimized version of cosine
similarity: dot product in Elasticsearch and prenormalized-angular in Vespa. We
can use this optimization because document and query embeddings are
normalized to unit length. We also store the original vector value but don’t return
it during queries.

There have been changes in Elasticsearch related to defaults for dense_vector fields.

For example, 8.14.0 changes the default index type to int8 hnsw from hnsw. This

means the index will automatically use scalar guantization of input float vectors to
byte. We started this benchmarking effort with earlier versions and we decided to keep
the Elasticsearch index options.type=hnsw to compare apples versus apples using

float precision, even if this is no longer the default setting in Elasticsearch.

34

https://github.com/vespa-engine/system-test/blob/master/tests/performance/ecommerce_hybrid_search/dataprep/download_and_prep.py
https://github.com/vespa-engine/system-test/blob/master/tests/performance/ecommerce_hybrid_search/dataprep/download_and_prep.py
https://huggingface.co/Snowflake/snowflake-arctic-embed-xs
https://github.com/vespa-engine/system-test/blob/master/tests/performance/ecommerce_hybrid_search/app_es/index-settings.json
https://github.com/vespa-engine/system-test/blob/master/tests/performance/ecommerce_hybrid_search/app/schemas/product.sd
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-source-field.html
https://docs.vespa.ai/en/document-summaries.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/doc-values.html
https://docs.vespa.ai/en//attributes.html
https://blog.vespa.ai/dictionary-vespa-to-elasticsearch-opensearch-solr/
https://www.elastic.co/guide/en/elasticsearch/reference/current/dense-vector.html#dense-vector-params
https://docs.vespa.ai/en/tensor-user-guide.html
https://github.com/nmslib/hnswlib/blob/master/ALGO_PARAMS.md
https://docs.vespa.ai/en/reference/schema-reference.html#prenormalized-angular
https://www.elastic.co/guide/en/elasticsearch/reference/current/dense-vector.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/release-notes-8.14.0.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/dense-vector.html#dense-vector-quantization

The choice to maintain float precision rather than use the newly introduced int8 scalar
quantization ensures a baseline comparison of raw algorithmic performance using the
same precision type in both engines with the same HNSW settings. While int8_hnsw in
Elasticsearch offers reduced memory footprint through scalar quantization of float
vectors to bytes (4x) and accelerated dot products (2.5-3x speedups), this comes with
an accuracy tradeoff. This type of optimization might be well worth exploring for users
of both engines, where you would configure Vespa also with int8 (byte) precision to
enjoy the same type of benefits.

Both Elasticsearch and Vespa continue to invest in memory footprint reduction and
vector similarity acceleration techniques to reduce infrastructure costs, including
binary guantization that converts float vectors to bit vectors. However, for meaningful
engine comparisons, using configurations with equivalent accuracy levels provides the
most reliable performance insights.

6.3 Queries

We run three types:

e Lexical search matching against the product title and description.
e \ector search (i.e., ANN) matching vectors derived from the keywords.
e Huybrid search, running both queries and adding up the relevance scores.

Those queries generally run after indexing is finished with different numbers of
benchmark client threads (1 to 64 to simulate query concurrency) in the following

setups:
e As they are (after indexing 1M products).
e After force-merging the Elasticsearch index to 1 segment.
e \With a category filter.
e After force-merging with a category filter.

We also run the query types after indexing finishes while reindexing all data to simulate
a mixed workload. We only run those queries with category filters to limit the
benchmark time.

We didn’t force-merge during these concurrent read and write workloads because it’s
an anti-pattern to do that during indexing: you’d rather change the merge policuy.

35

https://blog.vespa.ai/combining-matryoshka-with-binary-quantization-using-embedder/
https://www.elastic.co/search-labs/blog/bit-vectors-in-elasticsearch
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-forcemerge.html

As for the queries themselves, let’s describe how they are represented in both engines.

6.3.1 Lexical search - accelerated by Weak AND

Here’s an example of the weak AND query in Elasticsearch with the category filter:

Unset
{
"size": 10,
"_source": false,
"query": {
"bool": {
"must": {
"multi_match": {
"query": "Createx 2 Ounce Wicked Pearl Black",
"fields": [
"title",
"description”

1,
"type": "best_fields"

}

}.
"filter": [

{
“term": {
"category": "Arts_Crafts_and_Sewing"

Notice that we target both the title and the description fields, but we take the
maximum BM25 score between those fields (which is the default for multi_match).

We don’t return the whole document (_source) to reduce the number of variables. In
practice, different use cases will fetch different numbers of fields and fields of varying
sizes. We eliminate the fetch phase from influencing the benchmark and focus on
query-matching alone.

36

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-multi-match-query.html

The equivalent weak AND Vespa query is:

Unset
{
"yql": "select * from product where category contains
\"Arts_Crafts_and_Sewing\" and userQuery()",
"ranking.profile": "bm25",
"presentation.summary": "minimal",
"query": "Createx 2 Ounce Wicked Pearl Black"

The referenced ranking profile (bm25) calculates the maximum score from the title and
description fields to match the Elasticsearch behavior:

Unset
rank-profile bm25 {
function best_bm25() {
expression: max(bm25(title), bm25(description))

}
first-phase {
expression: best_bm25

37

6.3.2 Vector search

Here’s a filtered ANN query for Elasticsearch:

Unset
"knn": {
"field": "embedding",
"query_vector": [
.. lots of floats go here ..
1,

"k": 100,
"num_candidates": 100,
"filter": [
{
“term": {
“category": "Arts_Crafts_and_Sewing"
}
}

The k value is meant to match targetHits from the Vespa query. Meanwhile,
num_candidates is kept at 100 to match Vespa’s default hnsw.exploreAdditionalHits=0,
which implies that 100 candidates are explored in both engines:

Unset
{

"ygl": "select * from product where category contains
\"Arts_Crafts_and_Sewing\" and
({targetHits:100}nearestNeighbor (embedding, q_embedding))",

"ranking.profile": "closeness",

"presentation.summary"”: "minimal",

"query": "Createx 2 Ounce Wicked Pearl Black",

"input.query(q_embedding)": [
lots of floats go here ...

38

https://docs.vespa.ai/en/reference/query-language-reference.html#hnsw-exploreadditionalhits

Note that the closeness rank profile simply computes the distance (defined in the
schema) between the query vector and the document vector:

Unset
rank-profile closeness {
inputs {
query(qg_embedding) tensor<float>(x[384])
}
first-phase {
expression: closeness(field, embedding)

}

39

6.3.3 Hybrid search

For Elasticsearch, we used the boolean gquery, which simply adds up the scores from
lexical and vector searches. Note that we’re not evaluating relevance in benchmarks
here - which hybrid approach works best varies significantly by use case. Something

like Reciprocal Rank Fusion might work better, but adding scores is good enough for
measuring performance.

Unset
{

"size": 10,

"_source": false,

"query": {

"bool": {
"must": {
"multi_match": {
"query": "Createx 2 Ounce Wicked Pearl Black",

"fields": [
“title",
"description”

1,
"type": "best_fields"

}
o
“filter": [
{
"term": {
"category": "Arts_Crafts_and_Sewing"
}
}
]
}
b
"knn": {

"field": "embedding",
"query_vector": [
. lots of floats ...

I

"num_candidates": 100,
"k": 100,

40

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-bool-query.html
https://docs.vespa.ai/en/phased-ranking.html#cross-hit-normalization-including-reciprocal-rank-fusion

“filter": [
{
"term": {
"category": "Arts_Crafts_and_Sewing"

Note that the knn query is outside the main query block. This implies that it does a
pre-filter on its inner category filter, and then fetches the top 100 ANN results. The
main query block is effectively another boolean should clause, performing the same
filtered lexical search that we’ve seen earlier.

Another approach would have been to put the knn query inside the query—-bool block,

with it and the multi match as two should clauses. But then the filter clause for
the category would apply as a post-filter, which wouldn’t be apples-to-apples for the

Vespa query below. That’s why we need to duplicate the category filter: to be applied
to both the lexical search and the ANN search as a pre-filter.

As for the equivalent Vespa query:

Unset
{

"ygql": "select * from product where category contains
\"Arts_Crafts_and_Sewing\" and
(({targetHits:100}nearestNeighbor (embedding, q_embedding)) or
userQuery())",

"ranking.profile": "hybrid",

"presentation.summary": "minimal",

"query": "Createx 2 Ounce Wicked Pearl Black",

"input.query(q_embedding)": [

. lots of floats go here ...

]

41

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-knn-query.html#knn-query-filtering

Here, the category filter works for the weak AND (userQuery ()) and a pre-filter for the
ANN search (nearestNeighbor).

We still aren’t precisely apples-to-apples regarding how the query runs because of how
Elasticsearch/Lucene and Vespa fall back to exact brute-force KNN. See section 5.2.5
for more details.

6.3.4 Result set comparison

Our approach focuses on assessing the set similarity of results produced by both
engines for identical queries. Specifically, we execute each query against both systems
and then analyze the overlap among the top-10 results. With this approach, we can
gauge the comparability of the engines’ outputs, ensuring that performance
differences observed are not due to fundamental disparities in the results returned but
rather due to efficiency differences.

Query Type Average overlap@’10 (Vespa versus
Elasticsearch)
Lexical (WAND) 0.79
Lexical (WAND) + filter 0.81
Vector (ANN) 0.94
Vector (ANN) + filter 0.97
Hybrid 0.79
Hybrid + filter 0.81

42

The divergence in lexical search results is mainly down to linguistics. Even though we
configured Elasticsearch’s analysis to be similar to Vespa’s linquistics, there are still
differences:

e Tokenization
Vespa’s SimpleTokenizer is similar, but not the same to Elasticsearch’s Standard
tokenizer. For example, Vespa always tokenizes on dots, while Elasticsearch

sometimes doesn’t (e.g. “vespa.ai” remains a single token).
e Stemming algorithms
We checked a few input texts and most produced the same root words, but not

in every case. For example, “dreams” gets indexed as “dream” in both search
engines, but “hardwired” becomes “hardwire” in Vespa and “hardwir” in
Elasticsearch. We tried all the built-in Elasticsearch stemming implementations
and the porter2 stemmer seems the closest to Vespa.

Vector searches demonstrate a higher degree of overlap, suggesting consistency in
vector search implementations between the two engines.

The hybrid query type, which combines both lexical and vector elements, shows a
similar result overlap as the lexical. This alignment is due to the hybrid scoring, which
favors the lexical component. The bias occurs because lexical scores (BM25) typically
produce larger absolute values compared to the normalized dot product (cosine
similarity) used in vector search, thus exerting a stronger influence on the final hybrid
ranking.

6.4 Elasticsearch Refresh Interval

Another challenge in making a fair comparison is that Vespa is real-time: when you add,
update, or delete a document, changes will be visible after the client gets the
acknowledgment. Elasticsearch, however, is near-real-time: changes are visible after
the next refresh.

We kept the default 1s refresh interval as a middle ground between a fair comparison
and realistic Elasticsearch workloads:

e A shorter refresh interval makes the comparison more “fair” because it results in
more similar functionality.

e Alonger refresh interval is closer to what most Elasticsearch deployments use in
production.

43

https://github.com/vespa-engine/system-test/blob/master/tests/performance/ecommerce_hybrid_search/app_es/index-settings.json#L5-L22
https://docs.vespa.ai/en/linguistics.html
https://github.com/vespa-engine/vespa/blob/master/linguistics/src/main/java/com/yahoo/language/simple/SimpleTokenizer.java
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-standard-tokenizer.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-standard-tokenizer.html
https://github.com/vespa-engine/system-test/pull/4229
https://snowballstem.org/algorithms/english/stemmer.html

Elasticsearch also has a clever optimization: if you don’t search an index for 30

seconds, refresh is off until you search it again.

Most benchmarks here write the data, do a manual refresh, then start queries. This way
Elasticsearch can write without spending resources on making results visible. Unless
we’re talking about updates. More details on how updates work in both engines are in
section 5.1.

There’s also a benchmark of searching while refeeding, where the refresh interval
becomes essential: make it shorter, and refresh takes more resources and invalidates
more caches. Make it longer, and we’ll be serving more stale data. Meanwhile, Vespa is
real-time.

6.5 JVM and Thread Pool Settings

JVM settings are also complex to compare because Vespa has more processes than the
stateless container JVM. Still, we increased it to 16GB maximum heap size and kept
everything else default. Elasticsearch is effectively one JVM process, where we kept
the default of 31GB maximum heap size. During benchmarks, we weren’t constrained by

heap size on either of the engines, and GC time was insignificant.

It’s a similar story with the number of threads: while some thread pools are similar
between Elasticsearch and Vespa, they execute these tasks differently. For example,
both have write threads, but Vespa’s write path uses more CPU, even though the
default thread pool size is 2 the number of processors compared to the number of
processors in Elasticsearch. Part of this could be because Vespa’s writes are individual
and real-time. Another part could be because Vespa has another thread pool (shared)

that is used to search the HNSW index in parallel to locate the neighborhood in which to
insert a new vector.

44

https://www.elastic.co/guide/en/elasticsearch/reference/current/near-real-time.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/near-real-time.html
https://docs.vespa.ai/en/jdisc/
https://docs.vespa.ai/en/performance/sizing-feeding.html#content-node-thread-pools

These differences mean we can’t simply set the same thresholds for similar thread
pools to make results comparable. Instead, we looked at whether thread pool settings
are a good enough fit for the use case. And it seems like the defaults (for both Vespa
and Elasticsearch) are decent. So we kept the defaults, which, at the time of writing
this, on a machine with 62 cores available for the search engine, are:

e ForVespa
o 64 match threads for searches
o &1 for field writer and 31 shared threads used during indexing
e For Elasticsearch
o &1search coordinationand 94 search worker threads for queries
o B2 write threads for indexing

We can argue that the total number of threads for Elasticsearch is too large. Especially
during a mixed workload, we’d have more than 3x more active threads than CPU cores.
But this isn’t enough to make us steer from the defaults for several reasons:

1) Side-effects. If we reduce thread pools, we might negatively affect performance
for query-only or write-only workloads.

2) Wait time. Search threads sometimes have to wait. It’s the reason why the
default is 1.5 times the number of cores (plus one).

3) Fairness. Vespa’s total number of threads is also larger than the number of CPUs.

4) Stay realistic. In our experience, few Elasticsearch users reduce thread pool
sizes. Most hosted Elasticsearch providers don’t even allow you to change that.

5) Reproducibility. We want to stick as close to the defaults as possible so that
new runs of the benchmark reflect changes in the defaults. Defaults are
generally sensible and often adjusted as the engine’s internals change.

45

6.6 Test Procedure

The test procedure is best described through the Elasticsearch test procedure here.
Each invoked function is described in the base file. Vespa test files are in the same
directory but are more challenging to read due to deeper dependencies within the test
framework. In essence, both tests perform the same steps:

1. Preparation steps. Start Elasticsearch/Vespa and create the index or deploy the
application, respectively.

2. Write the data. This implies preparing the dataset in the Bulk APl and Document
V1 AP| formats. For actual writes, for Elasticsearch, we invoke cURL over 16 async
threads with batches of 12000 lines (6K documents). We found that this
concurrency and batch size gives good enough throughput to manage write

efficiency (more on metrics below) while cURL used insignificant CPU compared
to Elasticsearch. Similarly, we used Vespa’s FeedClient over 4 connections. Like
with cURL, FeedClient wasn’t compressing, but unlike cURL, it used TLS. Still, the
CPU usage of FeedClient was insignificant, so we could go ahead and measure
efficiency.

3. In both engines, we flush the memory index to disk. This way, none of them
“cheat” by using the indexing buffer for queries.
4. Run queries. There are multiple combinations here: with and without filters, with

various client threads for each. Elasticsearch and Vespa queries are run via
vespa-fbench, which can benchmark almost any HTTP request.

5. Rewrite the data and perform in-place updates. After the bulk of queries, two
more write tests are done: re-writing all data again (i.e., a reindex test) and
partial updates (i.e., updating the price field). Both are done similarly to the
initial write: preparing the data and using cURL and Vespa FeedClient.

8. Mixed workload. Finally, another rewrite workload is performed (precisely the
same as the previous rewrite), but this time, we re-run some of the queries.
Specifically, filtered gueries on 1, 16, and 64 client threads for only 9 seconds

each. This ensures that queries are done by the time re-writing is complete. By
contrast, queries at step 4 run for 20 seconds each because we don’t have this
constraint.

To explore the impact of the number of segments on Elasticsearch query performance,
we have a separate test procedure where we write the data and then force-merge to

one segment before running queries.

If you look at the code, you’ll notice that we record metrics at each step above (except
for preparation). We’'ll describe those metrics next.

46

https://github.com/vespa-engine/system-test/blob/master/tests/performance/ecommerce_hybrid_search/ecommerce_hybrid_search_es.rb#L13-L34
https://github.com/vespa-engine/system-test/blob/master/tests/performance/ecommerce_hybrid_search/ecommerce_hybrid_search_es_base.rb
https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html
https://docs.vespa.ai/en/reference/document-v1-api-reference.html
https://docs.vespa.ai/en/reference/document-v1-api-reference.html
https://github.com/vespa-engine/system-test/blob/master/tests/performance/ecommerce_hybrid_search/ecommerce_hybrid_search_es_base.rb#L15
https://github.com/vespa-engine/system-test/blob/master/tests/performance/ecommerce_hybrid_search/ecommerce_hybrid_search_es_base.rb#L15
https://github.com/vespa-engine/system-test/blob/master/tests/performance/ecommerce_hybrid_search/ecommerce_hybrid_search_es_base.rb#L77
https://github.com/vespa-engine/system-test/blob/master/lib/http_client.rb
https://github.com/vespa-engine/system-test/blob/master/tests/performance/ecommerce_hybrid_search/ecommerce_hybrid_search_es.rb#L22-L23
https://github.com/vespa-engine/system-test/blob/master/tests/performance/ecommerce_hybrid_search/ecommerce_hybrid_search_es_base.rb#L178-L185
https://github.com/vespa-engine/system-test/blob/master/tests/performance/ecommerce_hybrid_search/ecommerce_hybrid_search_es.rb#L28
https://github.com/vespa-engine/system-test/blob/master/tests/performance/ecommerce_hybrid_search/ecommerce_hybrid_search_es.rb#L28
https://github.com/vespa-engine/system-test/blob/master/tests/performance/ecommerce_hybrid_search/ecommerce_hybrid_search_es_merge_1.rb

/. Description of Sampled Metrics

To understand the detailed results in the next section, we must first examine the

metrics sampled during the benchmarks and their definitions.

/71 Writes

When benchmarking write workloads, we concentrate on throughput (as seen from the

client used for writing) and the CPU usage on the machine running Vespa or
Elasticsearch.

Throughput is the number of operations the system handles per second. In the
benchmark, this can be document puts per second or document updates per
second. However, looking at this metric in isolation is often misleading, as it
doesn’t say anything about the resources used by the system when handling
the workload.

CPU cores - The average number of CPU cores used when handling the workload.
This is a direct measure of the amount of resources used. We sometimes divide
by the number of cores (62) and multiply by 100 to get the CPU usage
(percentage).

Throughput per CPU core - Dividing the absolute throughput by CPU core usage
says something about the system’s effectiveness in handling the write workload.
This metric should be used for the most accurate and fair comparison between
the two systems.

47

7.2 Queries

When benchmarking queries, we concentrate on latency, throughput, and CPU usage
on the machine running Vespa or Elasticsearch.

e Average latency - The average latency in milliseconds among all query requests,
measured by vespa-fbench.
e 99 percentile latency - The maximum latency in milliseconds experienced by 99%

of all query requests, with only 1% of requests taking longer.

e QPS - The average number of queries per second handled, measured among all
query requests.

e CPU cores - The average number of CPU cores used when handling the query
workload.

e QPS per CPU core - The result of dividing QPS by CPU cores and says something
about the system’s effectiveness while handling the query workload. This is
similar to the Throughput per CPU core measured during the writing benchmarks.

e CPU usage - The CPU cores in use divided by the total number of CPU cores on
the machine. This is used when we test scalability with increasing concurrencuy.

/.5 Ratios

As seen above, two broad cateqories of metrics are collected in the benchmarks:

e Throughput (count/sec): higher numbers are better.
e Latency (ms): lower numbers are better.

To compare the results between Vespa and Elasticsearch, we calculate the ratio
between two samples by dividing one sample by the other. A ratio larger than 1.0 is in
favor of Vespa, and a ratio less than ‘1.0 is in favor of Elasticsearch. The ratios are
calculated as follows:

e Throughput ratio = Vespa sample / Elasticsearch sample
e Latencyratio = Elasticsearch sample / Vespa sample

When comparing the results from different workloads, the ratios show which of the two
systems performs best. The ratio numbers for Throughput per CPU core (writing) and
QPS per CPU core (queries) are the most relevant, including the resources used to
achieve the performance.

48

https://docs.vespa.ai/en/performance/vespa-benchmarking.html#vespa-fbench

8. Results

8.1 Writes

The following charts present a comparative analysis of write performance between
Vespa and Elasticsearch across four distinct writing-related workloads:

Write/feed, bootstrapping the index from O to 1M documents
Rewrite/refeed

Rewrite/refeed with concurrent queries

Update

Write throughput performance

I Vespa M Elasticsearch

50k
40k
30k

20k

10k

feed refeed refeed_with_queries update

Throughput (ops/sec)

2000
1500

1000

. = ™ o

feed refeed refeed_with_queries update

Throughput per CPU Core

This analysis focuses on two metrics:

49

e Throughput (operations/sec): Measuring the overall system capacity to process
operations.

o Elasticsearch shows a strong advantage in the initial write (feed)
bootstrap workload.

o \Vespa’s update throughput is more than 9 times higher than
Elasticsearch’s.

o Vespa achieves higher absolute throughput than Elasticsearch in 3 out of
4 workloads (refeed, refeed_with_queries, and update). That said, none of
the engines used 100% CPU in any of the scenarios, suggesting there are
bottlenecks that would benefit from further investigation. They could be
down to threading (in the search engine or in the client) or contention
points in the search engines.

e Throughput per CPU core: Indicating the efficiency of resource utilization.

o Elasticsearch demonstrates higher efficiency in the feed and refeed
workloads. In other words, it gets more done with less CPU utilization.

o Vespa shows better performance in the refeed_with_queries workload.
This might be due to more efficient querying (see below) as the measured
CPU usage includes queries.

o Vespa outperforms Elasticsearch in the update workload, with about 4
times higher throughput per CPU core.

It’s important to note that this analysis does not consider the latency of individual
write operations, as the primary focus is on overall system throughput and efficiencu.

In conclusion, while Elasticsearch shows advantages in bootstrap writing, Vespa gets
close when it comes to rewriting, especially when we consider the query load, see
below. Vespa is a clear winner when it comes to updates.

8.2 Queries

In the following illustrations, we present the results of our performance tests using a
configuration of 16 concurrent client threads, with filtered queries. Later in this section,
we perform a scalability analysis, examining how these engines perform across a
spectrum of user concurrency levels.

8.2.1 Fixed number of clients

This setup represents a balanced approach within our broader experiment, which spans
from low concurrency (1 client) to high concurrency (64 clients, slightly exceeding the

50

available CPU cores). We chose the 16-client configuration with query filters as our
primary focus for three reasons:

e [t represents a middle-to-lower level of user concurrency, aligning well with
real-world scenarios such as e-commerce search solutions where multiple users
interact simultaneously.

e |t provides a balanced view of system performance, avoiding the extremes.

e Filtered search is a common e-commerce use case.

This configuration allows us to assess how the engines perform under conditions that
closely mirror practical deployment scenarios. For snapshots of other configurations
(e.q. with a single client or unfiltered) see Appendix Al

Due to significant performance disparities between Elasticsearch configurations with a
single merged segment and multiple segments, we report these as separate entries.
The force-merged confiquration represents a read-only index with a single segment,
while the default setup reflects more typical real-world usage with multiple segments
(here, around 50).

Note that these benchmarks were performed with Elasticsearch 8.15.2, where
concurrent search of segments is enabled by default.

Queries with fixed concurrency and no feeding

In the following illustrations, the ratio number in the bars is calculated by comparison
with Elasticsearch default (multi-segment). For example, for the hybrid query case,
Vespa is 2.8x faster in average latency than Elasticsearch default, while Elasticsearch
(force-merged) is 0.9x faster than Elasticsearch default (meaning it’s slower).

o'

Filter query performance after initial feeding (16 clients)

! Vespa W Elasticsearch [Elasticsearch (force-merged)

Average Latency (ms) 99p Latency (ms)
60
20 50
15 40
10 30
20
‘i § o =l =N
0 aox d 0
hybrid vector lexical hybrid vector lexical
Queries per Second (QPS) 350 QPS per CPU Core
5000 300
4000 250
3000 200
150
2000
100
ml Al - i
0 -- 0 —- || -
hybrid vector lexical hybrid vector lexical

The latency and throughput metrics reveal Vespa’s superiority across all query types.
Vespa outperforms both Elasticsearch variants in average latency, with the gap most

pronounced for hybrid queries. Notably, all systems exhibit higher latencies for hybrid
queries than vector and lexical queries. This is natural as they combine the two other

types.

The 99th percentile (99p) latency data paints a similar picture, but notice here how the
multi-segment parallelization in Elasticsearch allows for a lower 99p latency than the
force-merged configuration for hybrid and lexical search, but not for vector.

Throughput metrics demonstrate Vespa’s performance advantage. Vespa processes
more queries per second per CPU core than both Elasticsearch configurations across all
query types, with the gap widening for vector queries (12.9x). Force-merged
Elasticsearch shows improved QPS over default, especially for vector queries, but still
lags behind Vespa. Note the low QPS per CPU core for standard multi-segment
Elasticsearch compared to the force-merged Elasticsearch (and Vespa).

52

Queries with fixed concurrency during refeeding

Filter query performance during re-feeding (16 clients)

" Vespa W Elasticsearch

Average Latency (ms) 99p Latency (ms)
40 70
60
30 50
20 40
30
- < B
0 N — 27 0
hybrid vector lexical hybrid vector lexical
Queries per Second (QPS) QPS per CPU Core
4000 100
3000 80
2000 60
40
1000 50 .
0 I I - 0 — . -

hybrid vector lexical hybrid vector lexical

In the concurrent query and feeding workload, there is no single-segment Elasticsearch
variant, as that would be incompatible with near real-time indexing. Vespa outperforms
Elasticsearch on all metrics in this test. Notably, Elasticsearch’s 99th percentile latency
nearly doubles for all query types compared to the previous workload without
concurrent indexing. In the hybrid case, the 99th percentile latency increases from
40ms to 70ms for Elasticsearch, while Vespa’s increases only from 25ms to 30ms.

It’s important to note that in this scenario, we cannot differentiate between CPU usage
related to queries versus writes. Consequently, the QPS per CPU core metric is heavily
biased against Vespa: it also accounts for CPU usage from write operations, where
Vespa achieved 2.5x more throughput (see section 8.1).

8.2.2 Scaling with increased load & concurrency

In this section, we paint a full picture of each system’s performance characteristics,
from low-load situations to high-stress scenarios. For example, 16 concurrent clients
push Elasticsearch’s concurrent segment search to nearly 80% CPU usage. This high
usage results in higher latency for the multi-segment Elasticsearch variant compared

o3

to scenarios with fewer clients. We’ve examined performance across various
concurrency levels to show each system’s capabilities and limitations.

The concurrency graphs below, often called *saturation curves® or *load vs.
performance curves®”, are used to assess the performance characteristics of systems
under varying loads. They help evaluate how the system behaves as we increase load
by increasing the client concurrency. We evaluate all query types using the filtered
variant: the query type is combined with filters as this is the most complex query type
and also a query type that reflects real-world e-commerce search use cases well.

The graphs plot three key metrics against Queries Per Second (QPS):

e Average Latency: The mean time to process a query.

e 99p Latency: The 99th percentile of query processing times, indicating
worst-case performance.

e CPU Usage: The amount of computational resources used. 100% here means that
all 62 available CPU cores would be in use, while 10% would be about 6.

P - concurrency = k
Observed |atencg .-
concurrency = 1 §aturation
E—A -— -
Observed ’Gkrcughput (QPs) e

lllustration of expected system behavior. We start with one client (concurrency=1) and
observe the latency and obtained throughput (QPS). Then we increase the number of
clients (concurrency) up until k and continue to observe the throughput and latency.
At a certain user concurrency, saturation occurs (or a software bottleneck emerges),
causing latency to climb rapidly as queuing times become the dominant factor.

o4

The ideal system maintains low and stable latency while efficiently utilizing resources
before showing signs of saturation, where latency starts to climb. Once saturation is
reached, the systems will start queuing requests, and as we push more concurrent
clients after that point, the time spent queueing will dominate the overall latency
(queue time + service time). Each point in these graphs is generated by a certain
number of client threads.

While we could subject these engines to thousands of client threads to determine their
throughput capacity, the resulting latency numbers would be arbitrarily large and
would not generalize to lower user concurrency scenarios. This is a common mistake
practitioners make when benchmarking software systems, throwing lots of
concurrency at once, and then measuring latency. A more prudent approach is to start
with a single client thread (no concurrency), carefully monitoring resource usage and
latency, before progressing to higher loads. These types of saturation graphs are
invaluable for capacity planning and understanding system bottlenecks. For more on
this, see this practical engineering one-pager Little’s Law: How Long is the Wait.

o5

https://www.cmg.org/wp-content/uploads/2013/08/m_102_2.pdf

Hybrid search

QPS for hybrid filtered queries after initial feeding

Vespa —e— Elasticsearch —e— Elasticsearch (force-merged)
70

60
50
40
30
20
10

Average Latency (ms)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

120

100

99p Latency (ms)
B [5)] o
o o o

4]
o

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

100%

80%

60%

40%

CPU Usage

20%

0%

o

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Queries per Second (QPS)

The graphs compare the performance of Vespa, Elasticsearch, and Elasticsearch
(force-merged) for hybrid queries with increasing client concurrency (load). The

queries are executed against “idle” systems, without any concurrent write operations.

Each point per line represents a concurrency setting in (7, 2, 4, 8, 16, 32, 64).

56

All three configurations scale CPU usage linearly with query throughput, but the slope
of the CPU usage line is much steeper for the Elasticsearch variants. A steeper slope
indicates lower efficiency, resulting in fewer queries per second (QPS) per CPU core.

Vespa maintains low latency up to about 5000 QPS with 64 concurrent clients where
there are signs of latency increase. Vespa’s CPU usage is lower than the Elasticsearch
variants at peak reported QPS. This indicates that it would be possible to reach higher
throughput by increasing the number of concurrent clients (e.qg., pushing to 128
instead of stopping at 64).

The multi-segmented Elasticsearch variant starts to climb the latency hockey stick at
600 QPS. The latency skyrockets before CPU (100%) saturation. Observe that the 99p
latency starts climbing early at relatively low CPU utilization and concurrent clients.
This latency increase indicates that the concurrent multi-segment search introduces
contention, possibly related to synchronization between the concurrent threads.

The multi-segment Elasticsearch variant achieves the lowest 99p latency at low load
(e.q. 1 client) but uses significantly more CPU resources than Vespa and the
force-merged Elasticsearch variant to achieve lower latency. However, this low 99p
latency doesn’t translate to average latency, where Vespa is better across the board.

The average latency and the 99p latency of the multi-segment Elasticsearch variant are
lower than the force-merged Elasticsearch variant, up to 16 clients. This exemplifies
that reporting latency numbers at low concurrency without resource utilization metrics
doesn’t paint the full picture.

o/

Lexical search

QPS for lexical filtered queries after initial feeding

Vespa —e— Elasticsearch —e— Elasticsearch (force-merged)
25
20
15

10

Average Latency (ms)

0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

50

40

30

20

99p Latency (ms)

10

0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

100%

80%

60%

40%

CPU Usage

20%

0%
0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

Queries per Second (QPS)

The graphs compare Vespa, Elasticsearch, and Elasticsearch (force-merged)
performance for lexical queries (accelerated by WAND) with increasing client
concurrency (load). The queries are executed against “idle” systems, without any
concurrent write or indexing operations. Each point per line represents a concurrency
setting in (1, 2, 4, 8, 16, 32, 64).

58

Vespa maintains low and stable latency up to 8000 QPS, with only a slight increase at
the highest concurrency at 9500 QPS. Elasticsearch’s latency rises sharply after about
1500 QPS, saturating the CPU due to concurrent segment search. The force-merged
Elasticsearch variant shows better scaling with increased concurrency, maintaining low
latency up to about 3500 QPS.

Once again, Vespa’s average latency is the lowest across the board, while the
multi-segment Elasticsearch variant has the lowest 99p latency at low concurrency, at

the expense of higher CPU usage. The CPU usage lines show similar differences in slope
as for the hybrid case.

59

\VVector search

QPS for vector filtered queries after initial feeding

Vespa —e— Elasticsearch —e— Elasticsearch (force-merged)

45
40
35
30
25
20
15

10 e

Average Latency (ms)

0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k 11k

100 r

80

99p Latency (ms)

40
20 — J — -—"

0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k 11k

100%

80%

60%

40%

CPU Usage

20%
0%
0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k 11k
Queries per Second (QPS)

The graphs compare Vespa, Elasticsearch, and Elasticsearch (force-merged)
performance for filtered vector queries with increasing client concurrency (load). The
queries are executed against “idle” systems, without any concurrent write or indexing
operations. Each point per line represents a concurrency setting in (1, 2, 4, 8, 16, 32, 64).

60

Vespa demonstrates exceptional scaling, maintaining low latency (below 5ms) up to
10,000 QPS, with only a slight increase at the highest loads. Elasticsearch with
concurrent segment search reaches saturation at around 1,300 QPS with 8 concurrent
clients where latency climbs the hockey stick. The force-merged Elasticsearch exhibits
better efficiency, maintaining stable and low latency up to approximately 6,000 queries
per second (QPS). The CPU usage line slopes are similar to the other query types.

8.3 Results Summary

The results show Vespa’s superior query performance and efficiency across all query
load types. Vespa consistently delivers low latency and efficient resource usage over a
significantly broader range of queries per second (QPS) compared to both
Elasticsearch configurations. Notably, when examining CPU usage in relation to
throughput, Vespa exhibits a much gentler incline than both Elasticsearch variants. This
flatter slope is evident across all three query types, indicating that Vespa’s CPU usage
increases more gradually as the query load intensifies. You'll see the same patterns for
un-filtered queries in Appendix A.2.

The low QPS per CPU Core metric reveals an intriguing aspect of Elasticsearch’s
concurrent segment search feature, which can be attributed to the non-linear scaling
of parallel segment query processing. While increasing CPU resources aims to reduce
latency, it results in reduced efficiency. The force-merged Elasticsearch configuration
achieves significantly higher throughput and throughput per CPU core than the
multi-segment variant.

This phenomenon occurs because the parallel processing of queries across multiple
segments doesn’t yield proportional performance gains. For instance, utilizing eight
threads to search eight segments concurrently doesn’t result in a latency reduction to
Y8 of what a single thread searching sequentially would achieve.

This relationship between CPU resource usage and lack of performance improvement
stems from increased coordination overhead, potential resource contention, and the
inherent limits of parallelizing top-k search operators with sub-linear complexity.
Consequently, as more CPU cores are employed to enhance latency, the efficiency of
queries processed per core declines.

Top-k search operators, such as approximate nearest neighbor search or weak AND
variants, aim to reduce computational complexity by efficiently finding the best

6

https://en.wikipedia.org/wiki/Slope

matches without exhaustively scoring every document (linear complexity). These
algorithms offer sub-linear complexity relative to the total number of indexed
documents, meaning they scale well as the corpus grows.

Let’s consider a theoretical example with a corpus of 1 million (1M) documents and
compare a single segment (force-merged) versus 50 equally sized segments:

Single Segment Scenario:

If all 1IM documents were in a single segment, an HNSW graph search approaches
logarithmic complexity. The search might take approximately log(1,000,000) = 6 time
units.

Multi-Segment Scenario:
With 50 segments, each segment contains roughly 20,000 documents (1,000,000 / 50).
For each segment, the search takes about log(20,000) = 4 time units.

However, we need to search all 50 segments, so the total complexity becomes 50 *
log(20,000) = 200 time units. The multi-segment approach results in much higher
overall complexity (200 >> 6). Although these calculations are theoretical, they paint a
fairly accurate picture.

This is an interesting property of algorithms with logarithmic scaling with regard to the
number of documents. Let’s compare the above with a hypothetical linear search
algorithm where the time complexity scales directly with the number of documents (N).
When splitting such a dataset into M partitions, each partition would contain N/M
documents. Since these partitions can be searched independently and concurrently
using M threads, we would achieve nearly linear speedup.

62

9. Summary

With this benchmark, we aim to paint a comprehensive picture of the trade-offs made
by the two search engines, as well as their performance implications. While
Elasticsearch excels in initial writes, Vespa demonstrates superior query performance
and scalability across various load types. Vespa also has faster writes during the mixed
workload and during the update test.

Use cases with frequent updates and complex, high-volume query requirements might
find Vespa more suitable, whereas those prioritizing fast initial bootstrap could lean
towards Elasticsearch. The benchmark underscores the importance of evaluating
specific workload characteristics, including the balance between write and read
operations, query complexity, and scalability needs when choosing a search engine
solution. Ultimately, the "best” choice will depend on the particular use case,
performance priorities, and operational constraints.

9.1 Key Performance Differences

If the bottleneck for your use-case is CPU while writing new documents, Elasticsearch
is the clear winner. When it comes to queries, Vespa is more efficient in almost all cases,
the question becomes “by how much?”. The biggest speedup was with vector search:
10x-20x. There is a 2x-8x speedup in lexical search, while hybrid searches are
somewhere in the middle.

The intuition: most of the performance differences are related to the architectural

differences explained in section 5. Vespa has fewer data structures to process at query
time but pays for them with some write performance.

63

9.2 Implications of Performance Differences

How does this translate to our example e-commerce use-case? Let’s say we have this

B62-core machine and want to install Elasticsearch or Vespa to serve our product search.
Here are the differences that you can expect:

Initial write throughput: about 3x higher per CPU core with Elasticsearch

compared to Vespa.

Updating prices and stocks: 4x more throughput per CPU core with Vespa

compared to Elasticsearch. Those updates will be instantly visible to search, as

will all the write operations.

If you’re doing a nightly rewrite to the new index and that index remains static
during the day:

o

o

Elasticsearch’s indexing speedup will be offset by the force-merge. That’s
because we measured force-merge time and divided it by the number of

documents, resulting in 900 docs/s, more than 10x less than Vespa’'s
measured write throughput. Still, force-merge is usually worth it because
of the query performance gains (see section 8).

You can expect Vespa to support 2.3-3.2x the query throughput of
Elasticsearch across all query types tested here. Similar numbers apply to
average latency and p99 latencuy.

If you write and query concurrently, Elasticsearch will have more segments, so

differences depend more on the query type:

o

Vespa will support 4x more query throughput for hybrid searches than
Elasticsearch.

For vector searches, that number grows past 6x.

For lexical searches, the number shrinks to 2.7x.

All this while Vespa returns 2x-6x lower average latency.

The numbers above are conservative in Elasticsearch’s favor. For example, during the

mixed workload query tests, Vespa indexed at 2.5x the throughput compared to

Elasticsearch, leaving less CPU available for queries.

But what do the numbers above translate to in terms of cost? Let’s do a simulation with

a cloud provider to find out.

64

https://github.com/vespa-engine/system-test/blob/master/tests/performance/ecommerce_hybrid_search/ecommerce_hybrid_search_es_base.rb#L90-L94
https://github.com/vespa-engine/system-test/blob/master/tests/performance/ecommerce_hybrid_search/ecommerce_hybrid_search_es_base.rb#L90-L94

10. Cost Example

Say that you have this e-commerce data, and the SLAs are to run hybrid searches on it
with:

e Under 50ms query times. Quite common for e-commerce applications, especially
as some will have multiple underlying queries per user action.

e At least 700QPS. For the same reason, a site with enough traffic will quickly
generate these numbers.

And support at least 300 docs/second write speed. This is more than most 1M docs
datasets need daily, but it’s enough to reindex the whole dataset in 1 hour.

To support this use-case, Vespa needs less than % the hardware Elasticsearch needs.

Here’s how we got to this conclusion.

In this benchmark, filtered hybrid queries were running on Elasticsearch with 8 clients
at 613 QPS and with 16 clients at 784 QPS. The average latency ranged from 13ms to
20ms, both within the SLA. In both situations, Elasticsearch achieved around 17QPS per
core, so to meet our SLA we need 41 CPU cores.

Looking at the same type of queries for Vespa, we had 569 QPS with 4 clients and 1128
QPS with 8 clients, using about 4 and 8 cores respectively. To meet our SLA, we need 5.1
CPU cores. All this while providing a lower average latency of 7ms.

When looking at the throughput-per-CPU values for writes, about one CPU core should
be enough whether we’re talking about new documents, rewrites, or updates.

In AWS EC2, Elasticsearch could use a 48-core ¢8g.12xl machine to do the job. At the
time of writing, the on-demand price for this instance is $1.9/hour. Meanwhile, Vespa
could meet the same SLA with an 8-core ¢8qg.2xl machine. But to be absolutely sure
that we have enough RAM (maybe for future growth), we can use an m8g.2xl at
$0.36/hour. Still more than 5x cheaper.

65

Caveats of the math above:

We took the query and write numbers separately, instead of the “query during
refeed” numbers. That’s in order to make the comparison fair: the read+write
test does a lot more indexing throughput (and therefore uses a lot more CPU) for
Vespa than for Elasticsearch. This skews numbers in the raw results, especially if
we look at fewer clients: most of the CPU is used by indexing, making the
throughput-per-CPU numbers there meaningless.

Other use-cases will behave differently. Even with this e-commerce dataset, pure
lexical and vector searches will have different requirements. For filtered lexical
search on 16 clients, Vespa’s throughput-per-CPU values are still more than 6x
better than Elasticsearch’s, but for filtered vector search it’s more than 12x
better on Vespa.

66

1. How to Reproduce

This guide shows how to reproduce the benchmark results in this report using a single
machine. Vespa 8.427.7 and Elasticsearch 8.15.2 are used.

1111 Prerequisites

You need a machine running Linux or macOS (x86_64 or arm64) with the following
installed:

e Podman
e it
e python3d

To reproduce the benchmarks results the Podman machine should have 64 vCPUs as we
run query benchmarks with up to 64 clients.

If you haven’t used Podman before, you need to run the following (adjust accordingly
to fit your environment). The following sets 8 CPU cores and 28 GiB of memory available.
This fits well on a machine with 32 GiB of RAM.

Unset

podman machine init --memory=28672 --cpus 8
podman machine start

NOTE: The test configuration specifies 16 GiB for the Vespa stateless container so going

below this will cause the container to fail to start.

1.2 Bun Performance Tests

Checkout the system-test repo that contains the performance tests:

Unset
cd SHOME/git
git clone https://github.com/vespa-engine/system-test.git

Enter the directory with the performance tests:

67

https://podman.io/
https://github.com/vespa-engine/system-test/blob/master/tests/performance/ecommerce_hybrid_search/app/services.xml#L13
https://github.com/vespa-engine/system-test/

Unset

cd system-test/tests/performance/ecommerce_hybrid_search/

Run the performance test for Vespa. The results are placed in
perf results/8.427.7/vespa.json.

Unset

./run-perf-test.sh vespa

Run the performance test for Elasticsearch. The results are placed in

perf results/8.427.7/elasticsearch.json.

Unset

./run-perf-test.sh elasticsearch

Run the performance test for Elasticsearch that force-merges to one index segment.
The results are placed in

perf results/8.427.7/elasticsearch-force-merged.json.

Unset

./run-perf-test.sh elasticsearch-force-merged

11.3 Create Report

Ensure you are still in the directory with the performance tests:

Unset

cd system-test/tests/performance/ecommerce_hybrid_search/

68

Create a virtual Python environment and install dependencies:

Unset

python3 -m venv myenv

source myenv/bin/activate

pip install -r requirements.txt

Create all figures and save them in report output/.
NOTE: Remember to change the values for --machine cpus and --test cpus to
match the number of vCPUs on the machine used.

Unset

python3 create_report.py --machine_cpus 128 --test_cpus 62 --output
report_output perf_results/8.427.7/vespa.json
perf_results/8.427.7/elasticsearch.json
perf_results/8.427.7/elasticsearch-force-merged.json figure

NOTE: If the performance tests are executed in a virtual machine, CPU usage sampling
might not be available. If so, all “per CPU core” metrics are calculated as if one CPU core
was used.

See Appendix A.3 for sample reports generated by running the benchmark on a laptop
with fewer resources.

69

Appendix A: Other Test Results

These graphs complement those in section 8.2 by showing how results vary with:

e Different number of clients.
e Removing filters.
e Less capable hardware.

A/ Fixed number of clients

A1 Queries with fixed concurrency and no feeding

Filter query performance after initial feeding (1 client)

! Vespa [Elasticsearch [Elasticsearch (force-merged)

Average Latency (ms) 99p Latency (ms)
60
20 50
15 40
30
10
20
‘5l .aB © Lol =ull
. =HE =l . “ml
hybrid vector lexical hybrid vector lexical
Queries per Second (QPS) QPS per CPU Core
350 300
300 250
;gg 200
150 150
E: Il I E
50 0.4x . 50 l
0 - 0 -- - .
hybrid vector lexical hybrid vector lexical

The above illustrates the observed performance with one benchmark client, meaning
there is no user concurrency. A single user has the entire system available.

What stands out here is the latency difference between Elasticsearch and Elasticsearch
(force-merged) for all query types. By searching the segments concurrently using

70

multiple threads, Elasticsearch is able to achieve lower latency than the variant with a
single segment.

We can also see the same in the absolute Queries per Second. But, when we look at
efficiency, the relative QPS per CPU core, the force-merged variant has the upper hand.
The reason is simple, the multi-segment variant uses more CPU resources to achieve the
lower latency. This demonstrates that just reporting latency at low concurrency
doesn’t draw the full picture. As we have already seen in the result section, the picture
changes dramatically once we start increasing user concurrencuy.

Filter query performance after initial feeding (64 clients)

Vespa W Elasticsearch [Elasticsearch (force-merged)

Average Latency (ms) 99p Latency (ms)
70
120
60 100
50
40 80
30 60
20 I I 0 o
10 g 7.1x 3.8x . 20 -
. 3.0x
. i m =l . il B sl
hybrid vector lexical hybrid vector lexical
Queries per Second (QPS) QPS per CPU Core
10k 7.0x 250 9.7x
8k =3 200 5.1x
6k 150
4Kk 2= 100 g
2“ II K &
hybrid vector lexical hybrid vector lexical

The above demonstrates what happens with much higher concurrency. In this case, the
default variant with multi-segments has been pushed far above the knee of the
hockey-stick-shaped latency versus utilization graph. Now, we don’t want to pay too
much attention to the high latency at this point, but notice the throughput differences
between Elasticsearch and Elasticsearch (force-merged) where at this level of
concurrency, the force-merged variant has the upper hand.

These effects also demonstrate that it is difficult to find the sweet spot for

Elasticsearch configuration. The number of segments has a dramatic impact on the
performance and the tradeoff between latency, throughput, and efficiency.

71

Query performance after initial feeding (1 client)

! Vespa W Elasticsearch M Elasticsearch (force-merged)

Average Latency (ms) 99p Latency (ms)
20 60
50
15 40
10 30
20
: Il <R
2.0x x 1.5x
hybrid vector lexical hybrid vector lexical
Queries per Second (QPS) QPS per CPU Core
600 400
500
300
400
300 200
200
0.4x Ox
0 .- - 0 _- - -.

hybrid vector lexical hybrid vector lexical

This is similar to the 1-client picture from the beginning of this section, but it’s for
queries without filters.

72

Query performance after initial feeding (16 clients)

! Vespa W Elasticsearch M Elasticsearch (force-merged)

Average Latency (ms) 99p Latency (ms)
20 60
15 50
40
10 30
20
N I II p II il
5.0x 3.3x
0 = o 2.— =
hybrid vector lexical hybrid vector lexical
Queries per Second (QPS) QPS per CPU Core
600
8k 500
6k 400
300
4k
200
" Nz Bl Bmm B =
0 L[] 0 _— | [||
hybrid vector lexical hybrid vector lexical

Same here: queries without filters on 16 clients. You’ll find the equivalent with filtered
queries in section 8.2.1.

73

Query performance after initial feeding (64 clients)

I Vespa [Elasticsearch M Elasticsearch (force-merged)

Average Latency (ms) 99p Latency (ms)
100
50
80
40
30 60
. I I .
‘ " W]
9.6x 17.9x
hybrid vector lexical hybrid vector lexical
Queries per Second (QPS) QPS per CPU Core
20k 400
15k 300
B} I I | o I-.
hybrid vector lexical hybrid vector lexical

Similarly, unfiltered queries with 64 clients.

74

A.2 Queries with fixed concurrency during refeeding

Filter query performance during re-feeding (1 client)

! Vespa WM Elasticsearch

Average Latency (ms)

15
10
5 . ll
, I = |
hybrid vector lexical
Queries per Second (QPS)
200
150
100
d
0

hybrid vector lexical

You'll find the 16-client equivalent, along with our interpretation of it, in section 8.2.1.
This single-client variant behaves similarly to the equivalent test at the beginning of

35
30
25
20
15
10

o

10

S

q
0

99p Latency (ms)

hybrid vector lexical

QPS per CPU Core

hybrid vector lexical

Appendix A1, with one important difference: QPS per CPU Core values are irrelevant, as

they include the CPU usage for writes. And Vespa writes 2.5x faster in this test (see

section 8.1 for details).

75

Filter guery performance during re-feeding (64 clients)

B Elasticsearch

Average Latency (ms)

12.5%
—
vector

3.8x
|
lexical

Queries per Second (QPS)

I Vespa
140
120
100
80
60
40
50 8.5x
o
hybrid
7000

6000
5000
4000
3000
2000
1000

hybrid

vector

lexical

250
200
150
100

50

150

100

50

99p Latency (ms)

I - I =
. 5% - -

hybrid vector lexical

QPS per CPU Core

hybrid vector lexical

At the other end of the spectrum, when we increase the query load, the CPU is

predominantly used by queries. But here latency numbers become irrelevant for
Elasticsearch because it’s pushed beyond saturation and we’re effectively only
measuring throughput. This is where the hockey-stick graphs paint a clearer picture -

see section 8.2.2 and Appendix A.2 below.

A.2 Scaling with increased load & concurrency

Note that these are queries without filters. Results for queries with filters are in section

8.2.2.

76

A.2./1 Hybrid search

CPU Usage

99p Latency (ms)

QPS for hybrid queries after initial feeding

—o— Vespa —o— Elasticsearch —#— Elasticsearch (force-merged)

50
40
30

20

10 __._--—-—"'""'"'.

- & & P

Average Latency (ms)

0 1000 2000 3000 4000 5000 6000 7000

100
90
80
70
60
50
40
30 I
20

10

0 1000 2000 3000 4000 5000 6000 7000

100%

80%

60%

40%

20%

0%

o

1000 2000 3000 4000 5000 6000 7000
Queries per Second (QPS)

77

A.2.2 Lexical search

CPU Usage

QPS for lexical queries after initial feeding

w 25
E
- 20
o
c
3 15
m
|
<))
g 10
&
= 5
e::

50
@ 45
E 40
g 35
5 30
jg 25
o 20
Q15

10
100%

80%

60%

40%

20%

0%

—o— Vespa —o— Elasticsearch —#— Elasticsearch (force-merged)

2k

3k

4k 5k 6k 7k

2k

3k

4k 5k 6k 7k

4k 5k 6k 7k
Queries per Second (QPS)

8k

8k

8k

9k

9k

9k

10k

10k

10k

78

A.2.3 Vector search

QPS for vector queries after initial feeding

Vespa —e— Elasticsearch —#— Elasticsearch (force-merged)

30
25
20
15
10

Average Latency (ms)

0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

100
80
60

40 1

20 s‘.)' . 3

0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

99p Latency (ms)

80%

60%

40%

CPU Usage

20%
0%
0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
Queries per Second (QPS)

In our analysis of vector search without filters, we observe an unexpected sharp
performance degradation in the force-segment variant when CPU usage is low (40%)
with 64 clients. While other advanced query types show linear CPU scaling, vector
search on a single segment encounters a bottleneck that cannot be explained by CPU

79

usage alone. The curve bends backward because we achieve lower query throughput
with 64 clients than with 32 clients. We did not analyze the root cause of this behavior.

The Elasticsearch multi-segment variant shows a notable difference in CPU usage
patterns between lexical and vector search. Vector search exhibits a steeper gradient,
indicating poorer scaling performance. This difference can be attributed to their
distinct acceleration methods: lexical queries use BM-WAND pruning, while vector
search relies on HNSW graph search. The steeper gradient for vector search
demonstrates that HNSW, being more sub-linear, is less responsive to increased CPU
resources with concurrent segment search. Although Lucene’s implementation
attempts to share information across intra-query threads for both algorithms, this
optimization proves significantly less effective for vector search compared to lexical
search.

A.3 Impact of less capable hardware

The following presents results from running the same performance test on a Laptop
with considerably less CPU-resources than used in the Vespa performance test
framework.

Hardware:
Macbook Pro (2021) with Apple M pro chip and 32GiB of memory. We set aside 8 CPU
threads for the test and 28GiB memory as detailed in section 11.

A.3.1 Overall

The following presents results as done in section 1 with two overall illustrations. These
are filtered hybrid queries.

80

[Vespa

2500

hybrid

B Elasticsearch

vector lexical feed
Queries

—a&— Vespa —e— Elasticsearch

2000
@
A
o
(o]

S 1500
o
o
.
[«}]
a
wn
o
o

0

500
—_
wn

€ 400
L
)

c 300
[0}
—

3 200
[}
[w)]

® 100
[}
z

0

[}

o

m

17}

=

o

o

O

Note that since these results are obtained without CPU profiling, CPU usage is flat (1)

refeed
Writes

1000
) I . II
= Nl N B

update

R

100 200 300 400 500 600 700 800 900 1000
=t - - - -]
100 200 300 400 500 600 700 800 900 1000

Queries per Second (QPS)

8k

6k

4k

Throughput per CPU Core

and the throughput-per-core numbers assume 1 CPU core was used (in reality the test

was given 8).

81

A.3.2 Feed Performance

Write throughput performance

I Vespa WM Elasticsearch

9k
8k
7k
6k
5k
4k

3k
2k
« B
0

Throughput (ops/sec)

feed refeed refeed_with_queries update

When compared to the results in section 8.1, Elasticsearch shows improved throughput
ratios relative to Vespa in this CPU-constrained environment. Specifically, while the
more powerful machine showed a ratio of 0.7, this environment achieves a ratio of 0.4
for feed operations. This indicates that Elasticsearch more than doubles its absolute
feed throughput advantage over Vespa under CPU-constrained conditions. We don’t
show throughput-per-core here because it’'s the same as absolute throughput: in a VI,
the test wrongly assumes it uses only one CPU core.

A.3.3 Query Performance

We only include two illustrations because, as demonstrated in the overall section, the
picture doesn’t change much. Vespa outperforms Elasticsearch also with lower
resources available.

82

Query performance after initial feeding (1 client)

! Vespa W Elasticsearch [Elasticsearch (force-merged)

Average Latency (ms) 99p Latency (ms)
40 300
250
30 200
20 150
10 I 100
8.2x a 5.9% 13.1% . 50 T . | 5.9%
o 1N S| - o - el e
hybrid vector lexical hybrid vector lexical
Queries per Second (QPS) QPS per CPU Core
400 400
300 300
200 200
100 I 100 I
0 -- . —. 0 -- L —.
hybrid vector lexical hybrid vector lexical

Our analysis with a single client reveals an interesting contrast with our earlier findings.

While section A1 shows the multi-segment Elasticsearch variant outperforming the
force-merged variant in latency tests with one client, these tests show the opposite:
the multi-segment variant exhibits worse latency. This discrepancy appears to be
resource-dependent. On our less powerful node, the initial feed operation creates 90
segments, compared to approximately 50 segments on the more powerful machine

used in the performance test. We attribute this performance reversal to CPU saturation:
searching across 90 segments appears to overwhelm the less powerful node even with

just a single client.

83

QPS for hybrid filtered queries after initial feeding

VVespa —e— Elasticsearch —e— Elasticsearch (force-merged)
500

400
300

200

100)

0 100 200 300 400 500 600 700 800 900 1000

Average Latency (ms)

1000

800

600

400

99p Latency (ms)

200

0 100 200 300 400 500 600 700 800 900 1000

The image above illustrates system performance with increased concurrency and load
for the filtered hybrid query type. As noted earlier, in these we don’t see lower latency
for the multi-segment variant versus the force-merged variant. Presumably the low CPU
resources available and the many segments to search cause overload already at /1
client.

84

